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ABSTRACT

The present report established a probabilistic characterization of a

damaged structure, which is modeled as a nonlinear multi-degree-of-freedom

(MDF) system. The random excitation may be either stationary or nonsta-

tionary. The stiffness matrix is nonlinear to simulate the elasto-plastic

behavior of a damaged structure. The stiffness matrix is also random to

characterize the material and environmental variations. The governing

stochastic differential equation is resolved into one for the mean response

and another for its random component. The responses, their statistical S

moments and cross-moments are solved with discrete-time recurrence formu-

lations. The omission of the higher order terms in obtaining the response

statistics is admissible if the stiffness does not behave extremely random.

Both errors in the mean and variance responses, which arise from neglecting

the higher order terms, are of small order. The numerical computation shows

two important results. (1) The response autocovariance function for the

non-linear system has greater magnitude than the response autocovariance

function for linear system. (2) The response autocovariance function for a

system with random stiffness is significantly greater than the response

autocovariance function for a system with deterministic stiffness. The

probability of structural damage, or the structural reliability, is then

estimated by the upper bound of the cumulative energy dissipation. It is

noted that the damage diagnosis of structure is based upon the successful

mathematical modeling of the structural system. The formalism of the present

report, therefore, enables us to assess the damage for a generic class of

MDF non-linear system with Prandtl-Reuss material. In addition, the present

investigation allows us the ready adaptation to finite element analysis.

40

%S



ACKNOILEDG EMT

The authors wish to acknowledge the support of the Air Force Office of

Scientific Research in this study. The work was performed under AFOSR

Contract No. 85-0085A, Col. Lawrence D. Hokanson was and Dr. Spencer Wu is

the program manager.

.-

ii-



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ACKNOWLEDGEMENT ............ .......................... ii

TABLE OF CONTENTS ........... ......................... iii

LIST OF FIGURES ............. .......................... v

LIST OF TABLES .......... ........................... . ix

1.0 INTRODUCTION ............. .......................... 1

1.1 STATEMENT OF PROBLEM ......... .................... 1

1.2 LITERATURE REVIEW .......... .................... 5

2.0 LINEAR SYSTEM ............. ........................ 7

2.1 INTRODUCTION ............. ...................... 7

2.2 MATHEMATICAL MODEL ...... ...................... 8

2.3 FINITE DIFFERENCE SOLUTION ...... ................ . 12

2.3.1 Difference Formulation ..... ................ . 12
2.3.2 Evaluation of E[[KI{I L T(K}T .......... 16

2.3.3 Evaluation of E[[K]{p JHZ IT I .. ............ 18

2.3.4 Evaluation of E[{Z.}{ZjI T I . ............ 20

2.4 SUMMARY ......... .......................... . 21

3.0 NONLINEAR SYSTEM ......... ........................ . 22

3.1 INTRODUCTION ......... ........................ . 22

3.2 NONLINEAR MODEL ........ ...................... . 23 I
3.3 ITERATION SCHEME FOR COMPUTATION OF MEAN RESPONSE ..... . 32

3.4 FORMULATION ........ ........................ . 35

iii .6

.,. .,



F , w l r l -a r -; , -_ -S__ -. . n. r-. n- x-._ r-v' -. o'. ;r r t w 'r. -
' 

- - - . .. -- U-? -'W ° - -r' ,(r.

Page

4.0 AUTOCORRELATION AND CROSS CORRELATION OF RESPONSE MEASURES . . 40

4.1 INTRODUCTION ......... ........................ . 40

4.2 VELOCITY AUTOCORRELATION ...... .................. .. 40

4.3 ACCELERATION AUTOCORRELATION ..... ................ . 42

4.4 VELOCITY AND DISPLACEMENT CROSSMOMENTS ... ........... . 43

4.5 ACCELERATION AND DISPLACEMENT CROSSHOMENTS .. ......... .. 45

4.6 ACCELERATION AND VELOCITY CROSSMOMENTS ... ........... . 46

4.7 THREE OR MORE TIME INCREMENTS ..... .............. . 47

5.0 ENERGY DISSIPATION AND DAMAGE DIAGNOSIS ... ............ . 50

5.1 INTRODUCTION ......... ........................ . 50

5.2 ENERGY DISSIPATED RELATED TO DAMAGE PROBLEMS ....... ... 51

6.0 NUMERICAL EXAMPLES ......... ....................... . 56

6.1 INTRODUCTION ......... ........................ . 56

6.2 MATRIX ALGEBRA ......... ....................... .. 62

6.3 EXAMPLE ONE ......... ........................ 63

6.4 EXAMPLE TWO ......... ........................ 76

6.5 EXAMPLE THREE ........... ....................... 87

7.0 DISCUSSION AND CONCLUSION ....... ................... 100

7.1 DISCUSSION .......... ......................... . 100

7.2 CONCLUSION .......... ......................... . 104

REFERENCES ............ ............................. . 109

APPENDIX A - USER MANUAL OF FEDRANS ..... ................ . 112

APPENDIX B - COMPUTER PROGRAM "FEDRANS" ...... .............. ... 124

iv



LIST OF FIGURES

Figure Page

3.1 Typical beam element ...... ................... . 23

3.2 Small length cut from a beam .... ............... . 24

3.3 Stress-strain curve of elasto-plastic material ...... . 26

3.4 Combined bending and axial load ..... .............. . 26

3.5 Cross section of an I-beam ..... ................ . 27

3.6 Permanent-set property ...... .................. . 32

6.1 A configuration of a spatially discrete beam ... ....... 57

6.2 Uniform beam element with six degree of freedom ... ...... 61

6.3 The single-degree-of-freedom system for Example 1 ..... ... 64

6.4 Mean and autocovariance of the input forcing function
for Example 1 ......... ....................... . 64

6.5 Mean of linear displacement response for Example 1 . . . . 67

6.6 Mean of nonlinear displacement response for Example I . . . 67

6.7 Variance of linear displacement response for
coefficient of variation 0 - 0 ..... .............. . 68

6.8 Variance of nonlinear displacement response for
coefficient of variation 0 - 0. . . .............. 68

6.9 Variance of linear displacement response for
coefficient of variation 0 M 0.1 ... ............. . 69

6.10 Variance of nonlinear displacement response for
coefficient of variation B - 0.1 ... ............. . 69

6.11 Delta function ........ ...................... . 71

6.12 Comparisons of stationary displacement responsevariances for different small time increments ....... 71

6.13 Variance of linear velocity response for Example 1,
E-0.e .1,. ........ ........................ ... 73

6.14 Variance of linear acceleration response forExample 1, 8 - 0.1 . . . . . . . . . . . . . . . . . . . . 73

6.15 Crossmoment between linear velocity and displacement
for Example 1, B " 0.1 ....... .................. ... 74

V



Figure Page

6.16 Crossmoment between linear acceleration and velocity
for Example 1, 0 - 0.1.....................74

6.17 Crossmoment between linear acceleration and
displacement for Example 1, a - 0.1. ............. 75

6.18 Variance of nonlinear velocity response for
Example 1, B - 0.1......................75

6.19 Variance of nonlinear acceleration response for
Example 1, B - 0.1......................77

6.20 Crosamoment between nonlinear velocity and
displacement for Example 1, 8 - 0.1. ............. 77

6.21 Crossmoment between nonlinear acceleration and
velocity for Example 1, B 0.1. ............... 78

6.22 Crossmoment between nonlinear acceleration and
displacement for Example 1, B - 0.1 .............. 78

6.23 Cantilever beam for Example 2 two-degree-of-freedom
system............................80

6.24 Mean and autocovariance of the input forcing function
for Example 2.........................80

6.25(a) Mean displacement response for linear system,
at DOF -I..........................81

6.25(b) Mean displacement response for linear system,
at DOF-2 .......................... 81

6.26(a) Mean displacement response for nonlinear system,
at DOF-1I..........................82

6.26(b) Mean displacement response for nonlinear system,
at DOF-2..........................82

6.27(a) Variance of displacement response, linear system,

B-0, at DOF 1 ....................... 83I

6.27(b) Variance of displacement response, linear system,
0 - 0, at DOF - 2........................83

6.28(a) Variance of displacement response, nonlinear system,
0 0, at DOF - 1.......................84N

6.28(b) Variance of displacement response, nonlinear system,
B-0, at DOF 2 2........................84

Vi -



Figure Page

6.29(a) Variance of displacement response, linear system,
0 - 0.1, at DOF - 1 ....... .................... ... 85

6.29(b) Variance of displacement response, linear system,
B - 0.1, at DOF - 2 ....... .................... . 85

6.30(a) Variance of displacement response, nonlinear system,
B - 0.1, at DOF = 1 ....... .................... . 86

6.30(b) Variance of displacement response, nonlinear system,
B - 0.1, at DOF - 2 ....... .................... . 86

6.31 One story building frame structure for Example 3 ..... 8

6.32 Mean and autocovariance of the input forcing
function for Example 3 ...... .................. . 88

6.33(a) Mean displacement response for linear system,
at DOF = 7 ......... ........................ ... 90

6.33(b) Mean displacement response for linear system,
at DOF - 8 ......... ........................ ... 90

I O.

6.33(c) Mean displacement response for linear system,
at DOF - 9 ......... ........................ ... 91

6.34(a) Mean displacement response for nonlinear system,
at DOF - 7 ......... ........................ ... 92

6.34(b) Mean displacement response for nonlinear system,
at DOF .8. ....... ........................ 92

6.34(c) Mean displacement response for nonlinear system,

at DOF - 9 ......... ........................ ... 92

6.35(a) Variance of displacement response, linear system,
B - 0, at DOF - 7 ....... ..................... . 93

6.35(b) Variance of displacement response, linear system,

B - 0, at DOF - 8 ....... ..................... ... 93
6.35(c) Variance of displacement response, linear system,

B 0 0, at DOF - 9 ....... ..................... . 94

6.36(a) Variance of displacement response, nonlinear system,
B - 0, at DOF - 7 ..................... 94 'A

6.36(b) Variance of displacement response, nonlinear system,
B - 0, at DOF - 8 .......... ..................... 95

6.36(c) Variance of displacement response, nonlinear system,
B - 0, at DOF - 9 ....... ..................... 95

vii

~ ~ " %*



Figure Page

6.37(a) Variance of displacement response, linear system,

8 - 0.01, at DOF - 7 ...... ................... .. 96

6.37(b) Variance of displacement response, linear system,

8 - 0.01, at DOF - 8 ....... ................... .. 96

6.37(c) Variance of displacement response, linear system,

8 - 0.01, at DOF - 9 ....... ................... .. 97

6.38(a) Variance of displacement response, nonlinear system,

8 - 0.01, at DOF - 7 ...... ................... .. 97

6.38(b) Variance of displacement response, nonlinear system,

8 - 0.01, at DOF - 8 ....... ................... .. 98

6.38(c) Variance of displacement response, nonlinear system,

B - 0.01, at DOF - 9 ....... ................... .. 98

7.1 The comparison of response between (1) including the
higher order terms and (2) omission of the higher

order terms ......... ........................ . 103

7.2 The comparison of variance between (1) including the

higher order terms of (2) omission of the higher
order terms ......... ........................ . 103

7.3 The correlation between K and Z(t) .... ............ 105

viii



LIST OF TABLES

Table Page

6.1 The cross sectional dimensions and the material for
Example I ......... ......................... . 65

6.2 The cross sectional dimensions and the material
properties for Example 2 ..... ................. . 76

6.3 The cross sectional dimensions and the material
properties for Example 3 ..... ................. . 87

ix

=I.

• • . . . • .. • • . € • . • . • q~m -.. °. -. 'ft
W' , o a,' *"I€"q ePt> a~rq . q m ,p ., . ,' m~j . * " d *' "b "" '" '" *". '" ""' " "" "" :- " , " " "' *" P€ *°"'"" "" "" "' ' ' -' "'' " •" . . .. • "' " f



NOMENCLATURE

[A1 ], [A2], [A3 ]  matrices, combinations of characteristic matrices
[m], (c] and [k] -- eq. (2-15)

b width

[c] viscous matrix

c position of the beam outer fibre

E,I Young's Modulus, Area moment of Inertia

E[-] expected value of ()

Ed  dissipated energy due to damping

E dissipated energy in a small element due to plastic
deformation

E dissipated energy due to plastic deformation in a
system

E t  total dissipated energy

{f random excitation

{F random component of excitation {f)

[k), [k rs random stiffness matrix of a linear system

[K], [Krs] random component of stiffness

L length of a beam component

[m] mass matrix

M resisting moment in a beam

{R(,O)l restoring force in non-linear system

t time

{ z} random response (displacement)

{Z} random component of lz}

random variable, stiffness

Qy Rayleigh damping coefficients

coefficient of variation (Std. deviationimean)

X



strain

C 0permanent set

{f} expected value of {f}

XI expected value of (k]

[i] expected value of [z]

wnwd natural and damped frequencies

1 inverse of [ I

T transpose of [ ]

(') d( )/dt
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Chapter 1

INTRODUCTION

1.1 STATEMENT OF PROBLEM

The purpose of the investigation is to assess the structural damage due

to a random strong excitation. In the process, the research establishes a

probabilistic characterization of the inelastic multi-degree-of-freedom

(MDF) system and its response due to random excitation. The stiffness

matrix is nonlinear to simulate the elasto-plastic behavior of a damaged

structure. The stiffness matrix is also random to characterize the material

and environmental variations. Based on the statistical results, the damage

and the reliability of the structure can be assessed. This technical report

constitutes as part of the theory of damage diagnosis.

The reliability of a system is defined as the probability that it will

exhibit behavior that satisfies certain criteria over some preestablished

time duration. The criteria may associate with the survival of the struc-

ture without catastrophic failure or the functioning of the structure to

meet the design purpose even with cumulated amount of damage. The relia-

bility of a structural system, however, is not known when the design, which

is based on design codes, has been completed. The reasons are (1) struc-

tural design for dynamic environments is established using iterative pro-

cedures, (2) the dynamic environments are in random nature, (3) the

uncertainty of the structural system. They are stated as follows.

14. ~-'e-'I



(1) Structural design for dynamic environments is established using

iterative procedures: The design procedures of a structure for dynamic

environments can be summarized as below.

(a) The limitations on the design are defined.

(b) A preliminary concept on a safe design is proposed.

(c) The preliminary design is analyzed, and a model is tested,

numerically, or in the laboratory, if possible.

(d) The response is assessed. '

(e) The design is satisfactory if the response fits the require-

ments. Otherwise, the design must be modified, repeating steps (b)-(e) until

a satisfactory response is achieved.

It can be seen that the reliability of the structural system is not

known unless a proper theory is developed to assess the response. The

theory discussed here includes two purposes, namely, (i) to predict the

damage of the structural system, (ii) to assess the damaged structures for

existing structures. Such theory is known as the damage diagnosis in

structures. Therefore, it follows that the damage diagnosis not only can

help us in determining the assessment of the structural response, but also

enables us to establish the reliability for the structure under consider-

ation. On the other hand, without the theory of damage diagnosis, the

structural engineer has no way to know the reliability of the structure he

has designed.

(2) The dynamic environments are in random nature: In the design pro-

cess, it is possible to use deterministic analysis for some limited appli-

cations. This is true in situations where the structure under consideration

is loaded only by known deterministic forces and where the parameters of the

structure, its foundation, and the applied loads are nonrandom (or display

su %
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very little random variability). However, under most circumstances,

especially for dynamic loadings, it is desirable to execute analyses that

take into account random variability in the structural load and, possibly,

the parameters of the structure under consideration. When structural loads

are random, the computation and assessment of structural response in step

(c), (d), of the procedure for structural design, as mentioned in (1), must

account for this. Thus, a probabilistic measure, or an average measure of

structural response, must be computed and used in the response assessment.

The theory of damage diagnosis, hence, must take into consideration the

probabilistic response characterization of structure with random loads.

Examples of random dynamic loads are earthquake, blast, wind, ocean waves,
0

aerodynamic turbulence, vibration induced in transportation by road rough-

ness, dynamic load for aircraft during landing, etc. In order to execute

the analysis of structural response using a probabilistic approach, the

statistical properties of these loads must be known. These statistics are

essential for the theory of damage diagnosis. According to the statistics

of the random loads and the theory of damage diagnosis established, the

reliability measures can be assessed based on the probabilistic results.

(3) The uncertainty of the structural system: Randomness may also occur

in other important areas in the structural dynamic system. Particularly,

the parameters that characterize structural behavior may be random. For

example, in linear problem, the parameters that define stiffness, damping

and mass may be random. In other words, the parameters that define modal

frequencies and damping factors may be random. Further, in the elasto-plastic

problems, the parameters that define the nonlinear plastic characteristics

of structural behavior are definitely random. Structural parameter
J

randomness arises from two sources. The first is randomness in material

properties. The second is randomness in structural geometry and assenbly.

J



Randomness in structural characteristics may be manifested in various

ways. On a very general level, all material and geometric parameters may be

considered as random process and many of these random processes may be

correlated. On a simpler level, which is investigated for current

research year, randomness may be limited to the variation in one or a few

parameters, and these parameters are considered as random variables rather

than random processes. The elasto-plastic material belongs to this

category. However, for frictional material, such as concrete, the variation

in stiffness may be time dependent since the material will show stiffness

and strength degradation whose statistics are varied by time. In that case,

a random process which is used to represent the randomness in structural

characteristics is necessary. This will be investigated for next research

year.

According to these statements as discussed above, the reliability of

the structural system must be carried out by using the theory of damage

diagnosis in order to obtain a satisfactory design. Further, the damage

diagnosis is based on the successful modeling of the damageable structural

system. Therefore, it is obvious that the theory of structural damage

diagnosis is important because it can not only accurately describe and

analyze data, but also predict behavior under conditions not covered by

data. In particular, we use the theory of damage diagnosis in engineering

first to assist in the design of components and devices to achieve a speci-

fied level of safety and reliability at a minimum cost, and second to assist

in the optimum management of these structural systems in service.

In developing a diagnostic theory for damaged structures, the investi-

gations have studied various structural models. The first model was a

hyper-linear model, in which the nonlinear hysteretic structural behavior is

4 N



modeled by using the method of higher-order equivalent linearization. By

using this approach, the non-linear hysteresis of the restoring force can be

reproduced. However, it can not address the structural phenomenon of

permanent set. In order to overcome this, an elasto-plastic model that is

able to take into account the permanent set is proposed for the present

investigation. The objective of this report, therefore, is to establish a

damage theory that enables us to assess the probabilistic characterization

of a damaged structure, which is modeled as a nonlinear elasto-plastic MDF

system.

1.2 LITERATURE REVIEW

During the past years, the research effort sponsored by the Air Force

Office of Scientific Research has made significant progress toward develop-

ing a consistent structural theory in damage diagnosis and reliability

assessment. Numerous papers have been published by Ju et al. Among these,

[1,2] studied the diagnosis of symmetric edge cracks in simple structures,

where the cracks are modeled as a fracture hinge. The fracture hinge model

has recently been verified in an experimental study [31 to be reported

later. The fracture damage diagnosis for structure has been investigated

[41, wherein two nondestructive methods of damage diagnosis in simple and

complex structures are studied. The damage assessment for nonlinear system

which was modeled as higher-order equivalent linearization system was

investigated [5-7].

There are also several areas of research interest related to the

analysis of randomly excited system. The general problem of probabilistic

analysis of structural system is treated in many text books. Among these

)5



are the book by Lin (8], Soong [91, Crandall and Mark [10], Newland [ii],

Crandall [12,131 and Clough and Penzien [14]. These books treat the problem

of computation of response moments for structural system. The first passage

problems, the fatigue problems and the Markov character of the response of

systems excited by white noise are also presented in these books. In

addition, there are numerous papers published discussed the statistical

properties of the structural response (15-30], to name only a few. Among

these, Bogdanoff [15,16] has developed a stochastic cumulative damage model

that possesses the major sources of variability in life prediction as an

inherent part of its structure. Similar works, however, by different

approach have been investigated by Lin et al [17,18,191 where the cracking

propagation is modeled as Fokker-Planck equation. Wiggins and Moran [20]

developed a means for grading existing buildings. A more mathematical

quantification of damage in structures has been used by Ang and Wen (211.

Several other first passage problems are solved. For example, [22-29]

find the first passage probability, and peak response probability distri-

bution for SDF system. Ang [30] approximately computes the first passage

probability for MDF system.

There are some papers in the literature address the problem of damage

assessment. Yao [31) examined various definitions of structural damage and

reviewed available methods for damage assessment. Park et al [32] esta-

blished a model for evaluating structural damage in reinforced concrete

structures under earthquake ground motion.

6



Chapter 2

LINEAR SYSTEM

2.1 INTRODUCTION

The governing differential equation of motion for a structural frame-

work modeled as a discrete multi-degree-of-freedom (MDF) system can be

written:

[m]fiJ + [c](zi + [k]{z - {f), (2-1)

where [m], [c], [k] are the NxN mass, damping, and stiffness matrices, {ff

is the external load vector; {z}, {z}, ji} are the displacement, velo-

city, and acceleration vectors of the system. The differential equation

governing motion is random when some terms of the above equation are random

variables or random processes.

In many applications, the external load vector, {f}, is assumed to be

random. Less frequently, the coefficients of the above equation are also

assumed to behave randomly. In this latter application, the mass, damping,

and/or stiffness are not considered to be deterministic valued, but rather,

they are considered to be random and to possess specific probability dis-

tributions. All the coefficients in Eqaution (2-1) play an important role

in determining the dynamic response of a structure. However, if coeffi-

cients are to be considered as random, it is certainly clear that in prac-

tical applications to building structures the mass will have relatively low

random variation and the stiffness and damping will have relatively high



random variation. Because slight nonlinearities in material behavior can

occur in practice even when the fundamental response is linear, the varia-

tion in stiffness is especially important. Therefore, in the present

application only the stiffness matrix is considered to be a random coeffi-

cient. The other terms are considered to be deterministic. Specifically,

the coefficient [k] is assumed to be a matrix of random variables, and the

forcing function Jfj is considered to be a vector stochastic process.

It is important to note that in the analysis of a random differential

equation the initial conditions can strongly affect the results because the

probability distribution of the response for a dynamic system is related to

the initial conditions directly. However, in most structural dynamic

systems the initial conditions can be set to zero because the structures

start from rest in most situations of interest. Hence, the initial condi-

tions of Equation (2-1) are given as zero and are deterministic. I

Finally, note that Equation (2-1) can become nonlinear when the struc-

tural material responds in the plastic range. The nonlinear problem will be

considered in the next chapter.

2.2 MATHE]MATICL MODEL

As stated in Section 2.1, only {f} and [k] are treated as random in

Equation (2-1). The response, 1z}, then forms a random process. The

quantities (f}, [k] and Jzj can be decompo.ed as follows:

{f} - + {F}, (k] [k[] + [K], {zj - p + {Z, (2-2)

8 N
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where {(}, (k], and {p} are the mean values of {f}, [k), and {z}; {F}, [K],

and {Z} represent the random components of {f}, [k], and {z}. Taking the

expected values of Equation (2-2) results in

E({f}] - W+ E[{FI,

El[ki] - [XI + EllK],

E[{z}] - f + E[{z}I]. (2-3)

Hence, the random terms JF}, [K] and {Z} must all have zero means, because

E[{f}1 - {}, E[[k]] - [k], and E[{z}I - {j}. Equations (2-2) and (2-3)

indicate that a random process can be separated into two parts, the

deterministic part and random part. The deterministic part specifies the

mean of the random process and the random part characterizes the chance

fluctuation of the random process.

When it is possible to reduce a random differential equation into a

simple form with the mean zero property, it simplifies the solution of the

equation. In view of this,'we substitute Equation (2-2) into Equation

(2-1), to obtain

[mI({ii}+V}) + [c]({i}+Z) + ([X]+[K])({p}+{Z}) - f + {F}. (2-4)

The mean response can be obtained from the above equation; then the cemain-

ing part characterizes the random component of Equation (2-1). As an

approximation, it is assumed that the mean response is excited by the mean

of the input with the stiffness equal to its mean value. A motivation for

this approximation can be established as follows. Let g represent a measure
E



of a response random process that is a function of the excitation and struc-

tural parameter random variables, ai, i 1, N. The functional expres-

sion is

g f(l 2' a 2N ) "  (2-5)

Using a Taylor series, f can be expanded about the means of the random

variables to obtain

g - f(al$ 01 a 1
)

N

M f( " N + (i -i + -', (2-6) o

1 J.

where i, i - 1, .. N denotes the mean of . When the deviations from the

means are small, the series can be truncated following its linear terms. The

expected value of g is, therefore,

Eun ( s s a h e(2-7)

NN
Equation (2-7) shows that the mean value of a measure of a response random

process can be approximated when all the random variables upon which the

response depends take their mean values.

Based on Equation (2-7), the mean response can be obtained by solving

(mIM + Icl{M + (XfljIp - -01. (2-8)

4

The remaining component of Equation (2-4) then can be obtained by subtract-

ing Equation (2-8) from Equation (2-4), %

10
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[M] + + [c]{fi + ([K) + [X]){Z - (F} - [K]{pl. (2-9)

In Equation (2-9), [K]BZ} is the only term that involves the product of two

random quantities. In this sense it is a higher order term. Its values

will be relatively small when random fluctuations in the stiffness and

forcing function are small compared to their mean values. By neglecting

this term, Equation (2-9) can be reduced to the following form:

[m]J21 + [c]{Z} + [\J{Z} - {F} -[K](.±}. (2-10)

Equation (2-10) approximately governs the random part of Equation (2-1), and

Equation (2-8) approximately governs the mean of Equation (2-). It is

noted that in the above equation, {Z} and {Fj both are zero-mean vector

random processes and [K] is a zero-mean matrix random variable.

The advantage of separating Equation (2-1) into Equations (2-8) and

(2-10) is that Equations (2-8) and (2-10) have deterministic coefficients,

which are relatively easier to handle than random ones. When Equation (2-8)

represents the mean response of Equation (2-1), and Equation (2-10)

represents the random part of Equation (2-1), the mean square response

measures can be obtained directly from Equation (2-10). Equations (2-8) and

(2-10) are not independent since Equation (2-.10) includes the mean response

on the right hand side. The techniques of solving Equations (2-8) and

(2-10) will be discussed in Section 2.3.

II1
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It is noted that the higher order term is neglected in Equation (2-10).

However, the higher order term can be treated and solved for a SDF system

when the random stiffness K and the response random process Z(t) are both

Gaussian distribution. The discussions about the omission of the higher

order term are referred to in Article 7.1.

2.3 FINITE DIFFERENCE SOLUTION

2.3.1 Difference Formulation

In Section 2.2, it was established that the model of a random differ-

ential equation with random coefficients can be separated into two parts,

the deterministic part and the random part. Equations (2-8) and (2-10)

represent the model. In this section, techniques for solving Equations

(2-8) and (2-10) are established. Equation (2-8) is considered first:

[m]{j} + [cl]i} + - {}. (2-8)

A solution to this equation is sought using a finite difference approach.

This solution establishes the displacement response at the times t. - jAt,

j - 0, 1, 2, ... , where At is a small positive time increment. At time t.,

the equation governing motion is

[mIljNi} + [cli{p} + [klvP - {0j} (2-11)

where {ji is the mean value of response acceleration at t., {p} is the

mean value of response velocity at t . When the central difference method

is used, the acceleration and velocity are approximated by

12



{j - 2{- * + {-+ jlf)/At: (2-12a)

fI " (fV,+I } - Nj-I})/2At. (2-12b)

Substitution of Equation (2-12) into Equation (2-11) yields

m I( f Ij+ I}  - 2(p j} I + iv _1 ) [cM(Pj+1 }  - Itti_11)

At" 2At [(2-13)

This expression can be solved for {1ji } to obtain

{gj+ l} - [A1]- ([A2]{Vi.} + [A3]{ii.j_} + At{j}), j - 0,., 2,

(2-14)

in which

[A 1 ] - [clat/2 + [m],

[A3 1 - 2[m] - [\]At 2 , (2-15)

[A31 - [clAt/2 - (mi.

Equation (2-14) provides a recurrence relation for the displacement

response. To start the calculation it is necessary to know {Jp_}. Because

NO and {40 are known (usually, they are zero), the relations of

Equation (2-12) can be used to obtain {V 1

2

(Pi - {40 1 - At(1 0 } + 'it NUO/2. (2-16)

Using Equations (2-16) and (2-14), the mean displacement solution then can

be obtained.

Now Equation (2-10) is used to characterize the random response

component,

13



[mJ42} + [c]{j + [X]{Z} - {FJ -[K]LJ.. (2-10)

where [m], and [c] are the mass and stiffness matrices and [k] is the

deterministic mean of the stiffness matrix. Because the system under

consideration is linear with constant coefficients, [] is constant

throughout the time. At time step j, the response is governed by

[m]{2j: + [c]{.jI + []{ZJ} I {FjI - [K]{jI1. (2-17)

Again, apply the central difference approximation,

[m]({z. + I  - 2{ZjI + fZ j }) [c ({Z j+1} - {Zi I})

+t2 2At [ ]z }

M {Fj} - [K]{p.}. (2-18)

Solving for {Z j+I yields

{zj+1 [AI ] -I([A2]{z + [A3]Zj I + At2{FjI - t2 [K]{ijp) (2-19)

where [A11, [A2], [A31 are the constant matrices which are given in Equation

(2-15). Equation (2-19) represents the random part of the respofse at time

step j+1.

Let {zj+ 1}T denote the transpose of {Z j+}. The mean square response

measure, E[f{Zj+ 1 }{Zj+ 1}T], can then be established. When E[{Z j+I{Zj+ 1}T I

is computed, it will contain the terms which involve the product of {F.} and

{Z.}, {Z 1j_}, etc. However, it is true that when the input is white noise

excitation, the force at time t. is independent of the displacement response.3
at t . Therefore

T TE[{F HZ I E({FJ] E[{Z } ]  0. (2-20a)

14
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Another observation is that the force at time t.j is independent of the

displacement response at t.j- if the excitation is a sequence of independent

and independently arriving random impulses [331,

E[{F }{1fz 1T]I - E[{F .H1 E[fZ j 1 1}T I .(2-20b)

Further, it is reasonable to assume that the force is independent of

[K], i.e.,

E[[K]{1i J{F I} I - E[[KIlii.}1 E[HF I} I = 0. (2-21)

Using Equations (2-20) and (2-21), it can be shown that

E[{Zq }{Z.fz j+1 I - [A 1] -1 ((A 2 IE[{ZZ J']iI [A 2]T +

+ (A 3 E[Z .1 H1 -1][A 3] + At 4E[JF.}Fi ] +

+ At 4 E[K~hj{II.}jjT [K]IT I + [A 2 E[fZ.) z. M 1 [ A 3IT +.

+[A 3IE[{z. 1}{z ITI](A 2IT _

- At 2 [Kj T ][A 2 T _

At2 A 2]EHZJ i I 
T [ Tj _

- At 2 Ef[Kji} HZj- 1 T ](A 3 1T-

- At 2 (A 3]E[{z. HP }IT [K]TI])[A l-T. (2-22)

Note that, in the framework of a recursive solution, j H TIan

EHjZ.-1H 1  }1
T I can be obtained from the previous one and two steps of

computation if the current analysis evaluates E[{Z. }1Zj+ T 1. Further,

T T
the expression is simplified if it is noted that [A 3 JE[{Z 1}{Z ][A-)]

15



[A2 IEUZ }{ B} T[K] T, and [A3IE[f{Zj_I}{1jIT (K]
T I are the transposes of

T T T T T T[A2]E[{Z.}{Z i j T][A3I , E[[K]{j.Hz. i I][A2] and E[[K]hijl{Zj_ T][A3 T

respectively.

The autocorrelation function of the given excitation E[F {FI} I] is

assumed known or enumerable. The correlation terms E[{Z}{Z _IT, 
.3 j-~1

E[[K]fi fz IT], E[[K]j j-.IT and E[[K]IN}{ijIT [K] T I must be evaluated

T
in order to compute E[iZ HZ 1 1. These terms involve two vector or

matrix random variables and are accompanied by one or two deterministic

variables. Some special techniques must be provided to solve for these

quantities. In the next several sections it will be shown how these terms

can be treated and how methods for their evaluations are developed.

T T

2.3.2 Evaluation of E[[K]{ IN{B IT[K]T I

In this section, it will be shown how the term, E[[K]±jp{ijT [K]T I can

be generated in the step-by-step solution. The E[[K]{±j}jI } T[K]T I is an

expectation of a form where the inner variables are deterministic and the

outer variables are random. The general form of this type of problem can be

expressed as E[[K]{plfq T[K] T ] where [K] is the random matrix under consider-

ation and {p}, {qj are any deterministic column vectors. Let

[A] - E[[K]{p}{q} T[K] T, then

Ars - E(K riPiq mKsmI - pi qmE[KriKsm], for r,s - 1, --. N (2-23)

where A denotes the element in the r throw and s column of [A]. The
rs

notation used here is the indicial notation, i.e., any repeated index means

that a sum is executed over that index.

16



In order to establish the correlations between stiffness terms it is

necessary to go back to the definition of the stiffness matrix. Recall from

Equation (2-2) that [k) represents the random stiffness matrix. Each term

in the stiffness matrix of a structural frame is a function of the cross

sectional dimension of frame members, the member length, and Young's

modulus. By noting this, if only Young's modulus is considered as random

and the rest of variables as deterministic, the mathematical expression for

k ri, r,i - 1, .- N then can be written as:

kri - f1(E) - fl(o), for r,i - 1, --- N (2-24)

where E denotes Young's modulus and a denotes the only underlying random

variable which is E. It is important to note that [k) represents the total

stiffness matrix (mean plus random components) and [K] represents the random

component of the stiffness matrix (see Equation (2-2)).

When Taylor's expansion is used, Equation (2-24) can be expanded about

the mean of its underlying random variable, i.e.,

3fl

k ri fl(p ) + (a - P ) f, for r,i - 1, --- N (2-25)

where pi denotes the mean of a. Use of Equation (2-2) leads to the follow-

ing result:

Ki kri - E[k ( + . for r,i - 1, ... N
r a(2-26)

For small deviation, the product of any two elements in [K] can be estab-

lished by neglecting higher order terms. The mean value of a specific

product is

17
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E(K K 2 if 2 af2
ri sin a 2

where a denotes the standard deviation of a. Furthermore, if we postulate

that a a 0 E[a] where B is the constant coefficient of variation, Equation

(2-23) can be simplified,

E[K riPiq mK sm] 2 XriPiq m sm, (2-27)

where (k] is defined in Equation (2-2) and B is the coefficient of variation

of Young's modulus. Equation (2-27) provides a general and simple solution

when two random matrices are separated by any constant matrix. A more

complicated form can be established in the same way when two or more random

variables are included in Equation (2-24).

2.3.3 Evaluation of E[[K]{lf}HZ}T]

In this section, the term E[[K]{Bj{Z IT ] is discussed. Development of

an expression for this term is a problem similar to the one discussed in

Section 2.3.2 because the outer variables are random and the inner variable

is deterministic. However, [K] is negatively correlated with {Z.} and a

different approach to the solution must be pursued. Noted that the middle

variable, hJp }, represents the mean response of the system at time step j and

is a known quantity. Recall that for dynamic response analysis of a linear

multi-degree-of-freedom system, a sometimes useful representation of the

displacement is provided by the free vibration mode shapes. Any displace-

ment vector, {}, for a system can be developed by superposing suitable

amplitudes of the modes of vibration. Let {b 1, i - 1, N represent the

18



orthonormal mode shapes of a system which satisfies Equation (2-3) and

C (), i - 1, "-- N denote the corresponding amplitudes at time t.. Then
i

we can write

N

ip c J) blI + - + CN {b I i (bij, (2-28)
1 1 N I 1

i-i

where the superscript (j) denotes the jth time step. It is noted that
(j) (j)
c. , i - 1, ... N are time dependent and if we choose c. properly1 1

then {j} can be evaluated precisely. The c(. can be obtained easily by

noting that lbi} satisfies the orthogonality relation i.e.,

r T t'1 if r - s{b tmI(bs )0 else (2-29)

where [m] is the system mass matrix. With the aid of Equation (2-28), an

expression for cY,  can be developed.

N

{brIT[im]{Nj} M lbr}[m( c (J)bi}) - c ( j )r for r - 1, ... N

i-i (2-30)

The above equation shows how the modal amplitudes relate to the mean

response. When c. i - 1 ... N are evaluated in Equation (2-28),

E[[K{ j}{Zj TI can be rewritten:

19



N

E[ [KjIhiZj I T ] = E[[K](Z c ifb i zj}T ] -

I i-i

SZ c'J)(E[[Kljbiljz jr]). (2-31)
i-i

1Z I can be developed using Equation (2-19) at time step j. Use of Equation

(2-21) leads to the result:

E[[K]lb}{Z} IT  - (E[[Klb}Hz j [A2 IT + E[[K{bi{z I}T][A3 -

i 1 j- 1  2  
1 -2 3

- At2E[[K]{bi}{ij}T[K]T )[A1]
T . (2-32)

At T[Kj K )Ai-(

Terms like E[[K]{bi}{Z_ }T I and E[[K]{b{Z } ] of the above equation can
tj-1 1 -2

be obtained from the previous two steps when currently computing

E[[K]{bi}{Z} IT. The last term on the right hand side of the above equation

possesses the same form as that developed in Section 2.2.1. Equation (2-32)

Tthen provides a means for expressing E[[K]{Hp}{zI I. It is noted that

Equations (2-31) and (2-32) also provide E[[KI{pJ.HZjI. I when Equation

(2-28) is used.

2.3.4 Evaluation of E[{Zj}{ZjI

In this section, the term, E[{ZJ}{Z 1j_} T ], is discussed. If {Z.} is

replaced with the expression shown in Equation (2-19) at time t., anotherI

recurrence relationship will be obtained. Again, with the aid of Equation

(2-21), it an be shown that,

20
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E[HZiH Zj_ 1 T] [AI]-I ([A2]E[{ZjI}{Zj_I}T ] +

T A][z T 2 T(2-33)
+ (A3]E[(Z _I{Z _2} TI - At2E[[K]jI} ZjI 1).

Several observations are made regarding the above equation. The first

term on the right hand side is known if, for example, at time t j+ the term

E[HZ j+IHZj+ I
T ] is computed. The second term on the right hand side can 

be

obtained from the previous computation if E[{Z}'{Zj IT is computed in the

present step. The last term possesses the same form as was discussed in

Section 2.3.3. Therefore, Equation (2-33) provides the expression for

E[{Zj}{ZjI} T I and all its component parts can be computed.

2.4 SUMMARY

The techniques described in Sections 2.3.2, 2.3.3 , 2.3.4 provide

enough information to evaluate Equation (2-22). As stated before, {Z jI

itself is a zero mean random process. The mean square response, together

with the deterministic response, characterizes the statistical properties of

the response random process. Furthermore, if the probability distribution

is assumed to be Gaussian, the first and second moments computed above

completely characterize the random process. Hence, the probabilistic

description of the random system is established.
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Chapter 3

NONLINEAR SYSTEM

3.1 INTRODUCTION

It was shown in Chapter 2 that the linear random differential equation

with random coefficient can be separated into two parts, the deterministic

part And the random part. Equations (2-8) and (2-10) were established to

approximately define the model. The mean square response then was evaluated

as Equation (2-22).

In this Chapter a technique is developed to compute the mean and mean

square response of nonlinear structures. In this investigation it is

assumed that only the stiffness matrix behaves nonlinearly. Specifically,

the elasto-plastic property is assumed to govern material behavior. The

type of system to be considered is a structural framework. For such a

system the stiffness matrix is time dependent and is related to the dis-

placement response time history. For this reason it is necessary to combine ..

the stiffness matrix and displacement response to a vector which represents

restoring forces, or internal forces. However, the displacement dependent

stiffness matrix still needs to be evaluated in order to compute the mean

square responses.

The technique for analyzing the nonlinear system is similar to linear

problem because only the stiffness term needs to be reconsidered There-

fore, Equations like (2-8) and (2-10) still can be used at each step to

evaluate the mean and mean square responses. Some modifications are neces-

sary. In the next section, the model of the nonlinear system is discussed.



3.2 NONLINEAR MODEL

The stiffness matrix in Equation (2-1) characterizes the restoring

force of a structural framework. The stiffness matrix is formed by assem-

bling the stiffness of individual beam elements relating element stiffness

terms to specific elements in the global stiffness matrix. A beam element

with specific deformations at each degree-of-freedom (DOF) is shown in

Figure 3.1

MB

YJ

Figure 3.1 Typical beam element

where A, 6 e are the axial, vertical and rotational deformations at

:A A AAY

point A and PA' VA' MA are the corresponding nodal forces. (The quantities

at end B are defined similarly.) The relationships among the deformations

and forces can be easily obtained when the stress and strain in the beam

remain linear. However, when plastic response is allowed to occur, the

linear theory no longer holds. In the present study the material response

is assumed to be elasto-plastic. The relationship among nodal forces and

23
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deformations that accounts for this must be established. Before these

relationships can be established, some preliminary theories must first be

discussed.

First, the beam equation for an inelastic element will be derived.

Consider a small length dx cut from a beam

M ! I L V+dVOWM )xdM

Figure 3.2 Small length cut from a beam

where w is the external load. If the inertia effect of beam is neglected

for the stiffness only, the equilibrium equations are to be satisfied, that

is

V - wdx - V + dV, 
(3-1)

M + dM - M + Vdx 0.

Therefore,

dV dM d2 M3-2
- - dx -V, dx . (3-2)

dx ' dx dx

Equation (3-2) shows that the equilibrium equations for the deflection curve

of a beam are the same regardless of whether or not the response is plastic.

24
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Another important property which is not affected by the presence of

plasticity is the relationship between strain and curvature since it relates

to the geometry only,

b (xz) - rz. (3-3)

The cb(XZ) is the bending strain in the beam at a point whose coordinates

are x and z. The coordinate x is shown in Figure 3.1. The coordinate z is

the vertical distance from the neutral axis. The strain is assumed to be

constant across the width of the beam element. The r represents the curva-

ture of the neutral axis at point x.

Using the above notation it is possible to establish the relationships

among nodal deformations and forces. First, the material under consider-

ation shall satisfy the Prandtl-Reuss relationship. A typical stress strain

curve for such material is shown in Figure 3.3.

If a and e denote the yield stress and strain respectively then

Young's modulus is defined by E - a / . Any strain larger than e will

force the material to experience permanent set which is defined by

E t - . The E represents the permanent sets in the loaded material.
o y o

Before the elasto-plastic model can be used to analyze the stress and

strain in a beam during a dynamic analysis, several problems must first be

discussed. From Figure 3.1 it may be seen that any bar under consideration

can be subjected to the simultaneous action of bending loads and axial

forces. To understand how these operate simultaneously, consider the fol-

lowing figures which can represent the strain and stress distribution at any

section in the bar.

25
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a

ay --

t

Figure 3.3 Stress-strain curve of elasto-plastic material

(a) ((c) (d)

z

eb ca FE t t

Figure 3.4 Combined bending and axial load
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In Figure 3.4, cb' Ca are the strain due to bending and axial forces

respectively. The total strain, t is the superposition of c b and c a'

hence, we can write eb + Ca - C t  This strain is shown in Figure 3.4 (c).

Figure 3.4(d) is the corresponding stress distribution (after possibly

several load and response cycles). Note that the stress is not linear in z

because the material has been in plastic state and undergone permanent sets

as shown in Rigure 3.3. The permanent sets in the beam occur arbitrarily and

the reason for this will be discussed in the next section. The total stress

t (x,z) for an elastic-perfectly plastic material can be expressed as:

at a E( a(X) + Cb(x,z) - Eo(X,Z)), (3-4)

where e (x,z) is the permanent set at x-section and z fibre position. Ao

symmetric I-beam, shown in Figure 3.5, is illustrated for analysis.

C

Cb ca Ct

Figure 3.5 Cross section of an I-beam

Let the total load at x-section be resolved into an axial force P act at the

neutral axis and a bending moment M(x). Then the moment for this section

can be evaluated by

27



M(x) - A tw(z)zdz, (3-5)

where w(z) is the width of the beam at z. When at is replaced by (3-4),

M(x) - E fA (ea(X) + Cb(xz) - C°(xz)) w(z)zdz. (3-6)

Equation (3-3) can be used to simplify eb to

Eb(x,z) - zeb(X,C)Ic, (3-7) 0,

where E b (x,c) stands for the strain at upper fiber. By noting that

c a(x)w(z)zdz - 0, Equation (3-6) then can be reduced to

ac 2  c -

(x) - eb(XC) Iz w(z)dz - E e(xz)zw(z)dzM Cx -bx C) C0

Eb(XC) C
E1 c - E c0°(xz)zw(z)dz,

-C

where I ]A z2w(z)dz. When deflections in the beam are small, eb/C y", $
therefore, the moment is

c

M(x) - Ely" - E -c

Note that if c (x,z) is zero the above equation reduces to a linear system,

as it should. Rearranging Equation (3-8) yields

Ely" 4 1(W) + E (x,z)zw(z)dz (3-9)

-c
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Using Equation (3-2) a fourth order beam equation can be developed,

c a 2 C(x,z)

Ely"" 1 + E J 2  zw(z)dz.f- ax2
-c

In the present analysis of frame structures it can always be assumed

that the loads act at nodal points, therefore, we can let w 0. Therefore,

E~y"' I E x zw(z)dz + C1 , (-0

Ely" - E o(xz)w(z)dz + ClX + C2, (3-11)
-c

Ely" M E f C Jcxz/zw z 1 2x + C 3, (3-12)

-C

Ely' - E du Co(U,z)zw(z)dz + 1_, x2 + C x + C3  (3-12)
0 -C

Ely a E dv du Eo(u,z)zw(z)dz + 6 + I + C x + C.

3 (3-13)

The constant C., i - 1, -- 4 can be obtained from the boundary condition,

these are

y'(0) - 0A ,  y'(L) - eB,

y(O) - yAs y(L) - yB ' (3-14)

Use of Equation (3-14) in Equations (3-11) through (3-13) results in

C1  - 3 (qlL/2 - q2), C - L2 (qj/2 - qL/6),

C3 = EI8 A t C4 a ElyA ,  (3-15)
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where

-l
T EI(GB - GA) -E fo(uf)ZW~)dz

L cq,~~d = VeB-aA EfdufC0(~~wdu o,Z)W d

q2 EI(Y ) - EIG L - E f dv du e(uz)zw(z)dz.
2 YB -A A 0o f c

After the constant C., i - 1, .- 4 are evaluated, the nodal forces can be

established.

It can be shown that the moment in the beam is linear function of x by

substituting Equation (3-8) into Equation (3-6).

M(x) = C1x + C (3-16)

Using Equation (3-1),

V(x) - C (3-17)

Equations (3-16) and (3-17) give the relationship among nodal deformations

and nodal forces. In other words, if the nodal deformations are provided

then the moments and vertical shearing forces can be evaluated from Equa-

tions (3-16) and (3-17).

Now the axial forces are considered. Note that the axial forces also

can be obtained using the results developed above. Referring to Figure 3.5,

P a w(z)dz. (3-18)
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Again, using Equation (3-4), and noting the f eb(xz)w(z)dz - 0 and

fA w(z)dz - A where A is the cross section area, we have

c
P - E a(XWA - E fc e(x,z)w(z)dz. (3-19)

Integrating the expression over the length yields the following result.

fL' L L' u c
Pdx - E eLa(x)dx - E fo(du E(uz)w(z)dz.

0 c

Let c (x)dx - 6 be the absolute axial deformation. Then

PL - EA6 - E du f Eo(U,z)w(z)dz. (3-20)
-C

Therefore,-

P (AE - du fo(UZ)W(z)dz). (3-21)

-c (321

If 0 (u,z) is zero, the above equation reduces to linear result, as it

should. Note that c (x) is not a constant over the length of the beam since
a

the permanent sets in Equation (3-19) are not constant.

Equations (3-21), (3-16) and (3-17) provide the relationships among the

nodal deformations and forces. At this point, the permanent sets, however,

are still unknown. In order to evaluate the permanent sets an iteration

method can be developed. This will be discussed in the next section.
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3.3 ITERATION SCHEME FOR COMPUTATION OF MEAN RESPONSE

As mentioned in the previous section the permanent sets must be

obtained using an iteration method since no closed form solution can be

established. Before considering the iteration scheme, a property of the

permanent sets is considered. It was stated earlier that the permanent sets

accumulate arbitrarily. As an example consider the following beam cross

section and stress-strain curve.

B
A A

C rA C B s
0 Ao B

(a) (b)

Figure 3.6 Permanent-set property

Figure 3.6(a) shows a typical strain curve of a cross section with bending

only. Points A and B represent any two separate points with strains EAand

CB' respectively. Since the inputs are random, the strain at points A and B

may behave randomly, however, still possess linear relation as shown in

Figure 3.6(a) if only bending is considered. The corresponding positions of

EA and eB in the stress-strain curve may exist like Figure 3.6(b). At a

specific time, if cA and cB start to decrease, the strain history paths of
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points A and B on the stress-strain curve will be different as shown in

Figure 3.6(b). Therefore, at this stage points A and B will possess perma-

A B
nent sets 0 and c 0 respectively.

Furthermore, if the strain due to axial force is added, a more compli-

cated form of the permanent sets will emerge. An important fact is that the

strain due to bending and axial forces act simultaneously. The permanent

sets in the beam can be evaluated only when the two quantities discussed

above are added. According to the above statements, we conclude that the

permanent sets in the beam exist in an arbitrary form and can be evaluated

only from the total strain e
4t

Reconsider now the equation of motion. Recall that Equation (2-8)

approximately represents the mean response of a linear elastic system. For

a nonlinear system, as discussed in the previous section, the equation of

motion can be modified by replacing the restoring force term, [I]{id, in

Equation (2-8) by {R(p)j which is the restoring force of the nonlinear

system. The equation governing the mean response is

IL{ji} + + -R(p)l (3-22)

If the central difference method is used to solve this equation, then by

means of Equation (2-12), the displacements at time tj+ 1 are evaluated using

the formula

fPj+lj - [Al]-1 (2[m]{pij + (A3 ]{ pj1l + At2 ({ j} - {R(ii)D), (3-23)

where [A1] and [A3 ] are given in Equation (2-15). The above equation shows

. that the displacement responses at time tj+ 1 are dependent on the restoring
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forces at time t. only. By noting this, the numerical iteration sequenceJi
can be written as follows:

(1) The displacement responses at time tj+ 1 are computed from Equation

(3-23). By the assumption that the system starts at rest, {1o}, {l± } and

JR(p0)1 are all zero.

(2) For each member, the nodal displacements can be obtained from

fij+I} which are in global coordinates. Hence, the coordinate transforma-

tion is required in order to obtain the deformations of each member in local

coordinates.

(3) At the beginning of time tj+l, it is assumed that the permanent

sets for this time step are equal to the permanent sets at time t.. AfterJ

this assumption is made, terms such as the curvature y"(x) 1 ((x) and the

axial strain e (x) can be computed from Equations (3-9) and (3-19):
a

/*1
Cx + C2  1

y"(x) - E 2 + C (X'Z)zw(z)dz' (3-24)

Ca(x) (P + E f o(X,Z)Wkz)dz), (3-25)

a fEAZ/\Z
c

where C1 and C2 can be evaluated from Equation (3-15) and P can be evaluated

from Equation (3-21). The b (x) can be computed from y"(x) using Equation
b

(3-3).

(4) By means of Equation (3-3), the total strain e (x), 0 < x S L, can

then be computed from e (x) - b(X) + e (x).

(5) Based on c (x) new permanent sets can be evaluated. According to

the new permanent sets, new estimates of y"(x), a (x) and t(x) can be

evaluated. Steps (3) to (5) are repeated until convergence of the permanent

sets occurs.
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(6) After the final permanent sets are obtained, the restoring forces

for each member can be evaluated by Equations (3-13), (3-14) and (3-19).

Accordingly, the global restoring forces {R(j+1 )I are assembled by the

restoring forces of each member. Some elementary assembling techniques are

required to form global restoring forces {R( j+I)J.

Some modifications must be made in connection with the approximation

that requires unchanged neutral axis, as stated in the previous section. In

some cases the iteration scheme defined above will not converge because of

the requirement that the neutral axis remain unchanged. Numerical investi-

gations show that the permanent sets computed in a particular iteration

cycle will sometimes converge, and then alternate between two modes during

the iteration. In such cases, an approximation for the permanent set can be

established by averaging the two modes. Some analyses show that this

approximation yields good results.

3.4 FORMULATION

In Chapter 2, the model for separating a random differential equation

was established for a linear system. Equations (2-8) and (2-10) represent

the model. In the previous section it was shown that the mean response of a

nonlinear system can be established by substitution of the nonlinear

restoring force for the linear restoring force. The second order charac-

teristics of the nonlinear response must now be established. The techniques

for treating nonlinear problems are nearly the same as for linear problems.

However, some modifications are necessary in treating the stiffness matrix.

It was shown in the previous section that the mean response, (I}, can be
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represented using Equation (3-22) when the [kI{p} term is replaced by

{R(V)I, the restoring forces of the system. Equation (3-23) then provides

the solution of Equation (3-22) if the central difference approach is used.

To use the general approach of Section 2.2 to evaluate the mean square

characteristics of a nonlinear system, two things are necessary. First, it

is necessary to assume that during a single response computation time step

the nonlinear system behaves approximately as a linear system. The reason

for this is that the second order characteristics of the response of the

nonlinear system will be computed using Equation (2-22). Second, it is

necessary to evaluate the stiffness characteristics of a nonlinear system at

each time step. The reason is that the stiffness term [X] appears in

Equation (2-22). The mean displacement terms required in Equation (2-22)

are established as described above.

The equivalent stiffness matrix [X] of this system must be provided in

order to carry out the solution of Equation (2-10). This can be done if the

restoring forces of the system are known. It was shown in previous section

that the restoring forces can be computed when the displacements and the

offsets are known. Hence, the equivalent stiffness matrix can be esta-

blished. Let \ s,m a 1, -.- N, denote the elements in the stiffness

matrix. Recall that \ is defined as the force developed at degree of
sm

freedom s due to a unit displacement at degree of freedom m when all other

degrees of freedom are fixed. Let Q denote the restoring force at degree

of freedom s. The functional expression for Qs is

Qs h(z , zm, Z (3-26)
1 Z~N)

II
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where zi, i - 1, -- N, are the structural deformations at the degrees of

freedom i and h is a function of these deformations. Then X can be
sm

expressed as

aQS
X = = (3-27)sm Z

m

h(z, zm + Az +' + zN) - h(zl' z m - Az + z N)

2Az
m

The above formula provides the general expression for the equivalent stiff-

ness matrix element for the nonlinear system. Note that if no inelastic

permanent sets are allowed in the beam, then h is a linear function of the

z., i - I, --- N. When permanent sets occur in the beam then h is a compli-

cated nonlinear form that depends on the displacement history of the struc-

ture. This was discussed in the previous section.

It is observed that X , s,m - 1, ... N can be evaluated column by

column rather than element by element if Equation (3-27) is used since the

restoring forces are calculated in global form. In other words, the restor-

ing forces are formed in such a way that all elements are evaluated in a

th
vector, {R, rather than a single element, Q." Let \ mI denote the m

column in the equivalent stiffness matrix. Then Equation (3-27) can be

modified to yield

f m = aR I (3-28)
m m

m

{H(z z m + Azm + + zN)I - H(z zm - A zm + ZN )I

2Az
m

where {R} - {H(z 1 , - zN)} is the restoring forces vector.
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Another important property is that the equivalent stiffness matrix is

time dependent if permanent sets occur in the beam. If the central dif-

ference method is used, the stiffness matrix at time t. is evaluated basedJ

on the displacement responses at time t.. Equation (3-28) then can be usedJ

to establish the equivalent stiffness matrix at time t.. Once this is done,

Equation (2-10), which characterizes the random component of response, can

then be modified to

[m]fZ} + [c]{Z} + [X(p(t))]{Z} -FJ -[K]{jj, (3-29)

where the definitions of [(V(t))] and [K] are the same as before, i.e.,

[k(z(t))] = E[[k(z(t))]] + [K] - [k(p(t))] + [K]. (3-30)

Note that the random component of stiffness matrix is assumed to be a matrix

random variable. Using the central difference method Equation (3-29) can be

solved for Z j+, such that

z+I [AI -([A 2 11ZI + [A3]{Z._ + At2({F j - [KJ{1j})), (3-31)
J 1 3

where [A1] and [A3] are given by Equation (2-15) and [A, ] is given by
3J

2j
[A 2 ] - 2[m] - 2At (3-32)

2

a.,

38

%*



Note that the difference between Equations (3-31) and (2-19) is that

the term [A2] is time dependent in Equation (3-31). The mean square

responses can then be obtained in a manner similar to that used in Section

2.3 where Equation (2-22) was used. Here, though, [A,] is replaced by

[A2 ,1.

E[Zj+I z j+ I1 T I

- [AI]F (At 4E[{F}{F} T ] + At 4E[[K]{1±l{j T[KI
T ] +I

+ (A 2.jIE[jZ lf}Ij T ][A 2 ]IT  + (A 3IE[JZ jI11Zj_ T ][A 3]T  +.J .: . .

[A IE[Zj}{Zj-IT][A3IT + (AT E[+ZIjT][A') I T

S.33

At-E[[K]Ifi}iZ} ][A, I - At2[A ]E[{Zj pj T [K] -

3 .3

- At 2 E[[Kll.} {Z 1jI T ] A 1 T

- At2[A 3IE[{Zj_1}{P j}
T [K]

T
])[AI ]F

T . (3-33)

Each term shown in the above equation can be solved using the same tech-

niques as developed in Sections 2.3.2, 2.3.3 and 2.3.4 except in all cases

[A,] is replaced by [A2 . . Equations (3-23) and (3-33) then provide the

i
mean and mean square responses at time tj+ I .
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Chapter 4

AUTOCORRELAIION AND CROSS CORRELATION OF RESPONSE MEASURES

4.1 INTRODUCTION

In Chapter 2 the techniques of establishing the mean and mean square

displacement responses for a linear system were developed. In Chapter 3,

the case of the nonlinear system was discussed. Note, however, that only

displacement response was considered in these chapters. Sometimes, it is

desirable to know the mean characteristics not only of the displacement

terms, but also of the velocity and acceleration and of the cross terms such

40 as the products between displacements, velocities, and/or accelerations.

Moreover, the correlation between Z. and Z. for n k I still needs to be

evaluated when the response autocorrelation function is important. In this

chapter, the moments and cross moments, as described above, are established.

4.2 VELOCITY AUTOCORRELATION

In this section, the mean and mean square velocity response are con-

sidered. Recall that the mean velocity can be expressed as in Equation

(2-12b) when the central difference method is used,

{ij} - ({j+I - j_ )/(2At), j - 0, 1, 2, (2-12b)

i%

%+



where {fj±}, j - O, 1, 2, -. , is the mean displacement response vector at

time t.. The random component of the velocity can be expressed using the

same expression:

{Vj - {Z 1 )/2At, j - 0, 1, 2, - (4-1)

where {V.i, j - 0, 1, 2, *., represents the random component of the velo-

city response vector at time t., and {Z.}, j - 0, 1, 2, *, represents the

random component of the displacement response vector at time t.. Accord-

ingly, the mean square velocity can be evaluated by

EVjvjT] ._1 ([Z T T]
E[V V 2 ((E[{ +l}{zj+l ] + E[{Z.j_}{Z}jI -

4At

- E[Z j+IZjI ] 
- E[{Zj_{Zj+I T]). (4-2)

j - 0, 1, 2, ...

th th T
The element in the r row and s column of E[{V. HVj I is the correlation

th
between the velocity at time t, at the r degree of freedom and the velo-.3

th
city at time t. at the s degree of freedom. In the above equation, note

that E[{ZjIHZjI}T I is the transpose of E[{Z j+HZfjIT]. In order to

evaluate E[{Z J+ {zj_ T], Equation (2-19) which represents the expression

of (Z j+} in terms of {Zj1I} and 4Zj_ 1} must be used. Postmultiplying Equa-

tion (2-19) by {Z.ji T and then taking the expectation of the result yields

E[{Zj+IllZj - T I- [A1]-1((A 2IE[{Zj}{Z 1J_} TI + (4-3)

+ (A3 ]E[{Zj_ 1HZZj_ T] - At2E[[Kjp{Zj-l1rT).
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Each term in the above equation can be evaluated by using the techniques

discussed in Section 2.3.3 and 2.3.4. Accordingly, Equation (4-3) is solv-

able. The other terms in Equation (4-2) are known. Therefore, the mean

square velocity can be computed immediately when E[{Z j+HZ}j+1 T I is

evaluated.

Note that for nonlinear systems, the equivalent stiffness matrix, [I,

and the coefficient matrix [A2] which is a function of [XI, are denoted by

[X I and [A2 1, respectively. The j subscripts reflect the fact that the

stiffness is time dependent. Consequently, for the case of nonlinear

analysis, [A2. ] is used to replace [A2] in Equations (4-2) and (4-3); namely
J

E[1Z Hz i I - [A1 ] I([A 2 .E[{Zj}HZ _ITI + (4-3a)

+ [A3 ]E[IZ 
- I}{Z - 1 T I - At2E[[K]{iI Z - I}TI.

Equation (4-3a) can then be used to compute the nonlinear mean square

velocity.

4.3 ACCELEPATION AUTOCORRELATION

In this section the mean square acceleration is discussed. Using

Equation (2-12a), the random component of the acceleration at time t. can be

expressed as

{A.} - ({Z+} - 2{Z I + {Zjl)/t2 . - 0, 1, 2, .-- (4-4)

where {A4J represents the random component of the acceleration response

vector at time t.. The mean square acceleration can then be evaluated asJ
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E[{A JAT] I (E[{Z. + z. IT I + 4E[{Z}{Z IT] +
i At 4 +1 j+l . .

+ E[(Z j_}{Zj_.1 T I 2E[{Z j+I4 I T - 2E[{Z iZ -j+I
T  -

- 2E[4Z }{Z. jT ] - 2E[Z j 1 I}{Z}TI + E[{Z j+IZjI T ] +

+ E[{Z j}{Zj+l T] ). j - 0, 1, 2, - (4-5)

The element in the rth and th AJ T is the correlationrow nd s column of E[{AH} ]i h orlto

th
between the acceleration at time t. at the r degree of freedom and the

th
acceleration at time t. at the s degree of freedom. Note that

E[{Z z 1  ]Zj_ I T, E[{Zj_rIiZj+I T I are the transposes of

E[{Z j+lfIjT], E[{Z {ZjI}T], E[{Z j+I}Z j-1T], respectively. The terms

E[Z j+lfZ T I and E[{Z,}{Z jIT ] can be evaluated by using the techniques

described in 2.3.4. The term E[f{Z j+IZj_ T I can be evaluated by using

Equation (4-3) as discussed in the previous section. The rest of the terms

in Equation (4-5) are known if E[{Z j+HZ}j+1 T I is currently being

evaluated. Therefore, the mean square acceleration at time t. can be com-
}T

puted immediately after E[{Z jHIlZj 1  ] is computed.

For the case of nonlinear analysis, the acceleration response moments

can be evaluated in a manner similar to the mean square velocity discussed

in the previous section. Hence, use of [A2 .] to replace [A2 ] is necessary

for nonlinear problems.

4.4 VELOCITY AND DISPLACEMENT CROSSMOMENTS

In this section, the covariance between velocity and displacement is

considered. The covariance between velocity and displacement can be
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obtained easily if Equation (4-1) is used. Postmultiply Equation (4-1) by

{ZjIT then take the expectation to obtain

E[{Vi1lZ}T I - 1 E[({Z j+1 - {Zj }){} I T
.2 .2t j+ jl

" 2atr(E[{Zj+l}HZ i I ] - E[jZ j-I}{Z j 1]). (4-6)

The element in the rth row and s th column of E[{VHZ }I T] is the correlation
th * 2S

between the velocity at time t. at the r degree of freedom and the dis-

th
placement at time t. at the s degree of freedom. Each term of the above

equation can be evaluated by using the technhiques discussed in 2.3.4.

Since the random processes {VjI and {Z.} are both zero mean, Equation (4-6)

actually represents the cross covariance between velocity and displacement

at time t.. If the cross covariance between velocity and displacement of

the nonlinear response are desired, then the expressions for {V4I and {Z.}

that reflect the nonlinear response variation must be used.

Note that IVj} is the derivative of {Z.}. Theoretically, it can be

shown that {V(t) and IZ(t)} are orthogonal when evaluated at the same time

if {Z(t)} is weakly stationary. To prove this, let x(t) be a weakly

stationary random process. Consider the following partial derivative.

T E[x(t)x(t+T)] L S ] (w)ei WTdw i)S x(w)ei dw,a00 J, xx .

where S (w) is the spectral density of x(t). This representation is validxx

since it is assumed that x(t) is weakly stationary. Also, it is assumed

that x(t) is differentiable in a mean square sense. The left hand side of

the above equation can be simplified by rewriting the expression,
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E[X(t)x(t++ ) - E[X(t)kt+t)].

By letting '-00,

E[x(t)(t)] - i fu (&S (w)dw - 0.

The right side is zero since S (w) is an even function.
xx

Now consider Equation (4-6). If {Z(t)} is weakly stationary, the right

hand side of Equation (4-6) vanishes, because E[Z j+I{ZjITI and

E[(Zj_}{ZJIT I are equal. Therefore, E[{Vj{Zj IT  - 0 and the orthogonality

property is satisfied for the computed response. Consequently, the central

difference assumption used in this study leads to an orthogonality condition

that matches the orthogonality condition which occurs in a theoretical

weakly stationary random process. Note that this is true even for a non-

linear system.

4.5 ACCELERATION AND DISPLACEMENT CROSSMOMENTS

In this section the covariance between the acceleration and displace-

ment response measures is discussed. The approach is the same as described

in the previous section. If Equation (4-4) is used to replace {AjI which

represents the random component of acceleration, we have

E[{AL{jZ TI 12 (E[{Z j+IHZj IT] 2E[{Z HZ IjT +
At2

+ E[f{Z }1Z1 }T). (4-8)
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th sth I

The element in the r row and s column of E[{Aj{ZJ T I is the correlation

between the acceleration at time t. at the rth degree of freedom and the

th
displacement at time t at the s degree of freedom. Each term of the

above equation possesses the same form as discussed before. Hence, by using

Itechniques as described in Section 2.3.4 and Equation (4-3), E[{AJ{Zj I

can be computed easily. Again, since the random processes {A } and {ZjI are

both mean zero, Equation (4-8) represents the covariance of acceleration and

displacement at time t.. It is clear that, using an approach similar to.3

previous section, Equation (4-8) can be used to represent the solution

either for the linear or the nonlinear system.

4.6 ACCELERATION AND VELOCITY CROSSMOMENTS

In this section, the covariance between acceleration and velocity is

discussed. By using the same approach as in Section 4.5, the covariance

between acceleration and velocity can be obtained immediately. If Equations

(4-1) and (4-4) are used then

E[A}{V}TI - _13 (E[{Z j+1HZj+ T11 - E[{Z j+I {ZjIlT ] I
2At 3

- 2E[fZ HZ I T + 2E(TZ Z I ] + E[{Z HZ T I-j j+1 E j-1 j-1 j+1

- E[jZ 1HZj1
T ). (49)

th ~ th

The element in the rth row and s column of E[{A.HV IT ] is the correlation

thbetween the acceleration at time t. at the r degree of freedom and the
.

velocity at time t. at the s degree of freedom. Note that
.3
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E[{Z j_{zj+l T I is the transpose of E[{Zj+ 1HZj_ T ] which can be evaluated

by using Equation (4-3). The terms Ef{Zij{Z j_ T] and E[{Zi HZj+T I can be

evaluated by using the techniques discussed in Section 2.3.4. Therefore,

the covariance of acceleration and velocity can be computed immediately

after E[({Z j+{Zj+ }T I is known.

It is already proved in Section 4.4 that a weakly stationary random

process is orthogonal to its derivative when evaluated at the same time.

This property can also be seen from Equation (4-9) if {Z(t)} is weakly

stationary since the right hand side of Equation (4-9) vanishes under weakly

stationary conditions. Consequently, the central difference assumption

satisfies the orthogonality condition for the acceleration and velocity.

This is true even for the nonlinear problem.

4.7 THREE OR MORE TIME INCREMENTS

It was mentioned earlier that sometimes it is important to evaluate the

term E[{Zj+n}{Z} iT, n Z 1, in order to obtain the displacement response

autocorrelation functions. This expression was established in several

previous sections for, specifically, n - 1, 2. However, for the case n k 3,

the problem still can be solved. To do this, 4Z } must be expressed in
j +n

terms of the displacement response at previous times. For example, consider

a linear system {Z j+n} can generally be expressed as:

{Z j+n I [A1]- ([A21{Zj+nI I + (A3 ]i{Zj+n 2} + At
2{Fj+n~l } -

- At2 [K]Ij+nl) (4-10)
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When this expression is postmultiplied by {ZjIT and the expected value is

taken, the result is

E[{Z.j+n HZj ]T I I([ 1([A 2IE[{Z j+nI}{ ZjT (4-1l)

+ [A3IE[(Z j+n2 Ij T I - At2E[[K]jij+n_ I T]).

Note that E[{F j+n_ IT] vanishes since {F j+n-} is independent of {Z.} T

and both are zero mean. The terms in (4-11) like E[{Z j+n_}{zj T] and

E[{Z j+n2}{zjT I can be reduced further to terms involving the crossmoments

E[{Zj+n_21fziT], E[Z j+n_3}{zjIT] and E[{Zj+n_41{zjT]. The reduction can

be continued until only the terms E[{ZZj+21z} T ], E[fZj+I I I and

E[{Zj{Z} iT ] appear in the expression. Then the crossmoment E[{Z Hn{Z}T]

can be evaluated. Obviously, it will take more computational time and large

storage capacity to obtain the results, especially when n is large.

An important property which might be of interest is whether the

response is weakly stationary. This can be determined using Equation

(4-11). A random process is said to be weakly stationary if its mean is

constant and its autocovariance function depends only on the time lag

between response variables considered. In terms of Equation (4-il) this

means that if

E[{Zj }{ZjTI - E[I{Z HnIZk )], (4-12)
.34n j3 k+n k

for all j and k and for arbitrary n then the second part of the above

requirement is satisfied. If, in addition, E[{Zj ] is a constant, then the

random process (ZJ is weakly stationary.

48

Ze



Clearly, the requirements set forth here can never be exactly satisfied

because the random process has deterministic initial conditions. However,

when j become large the requirement in Equation (4-12) may be approximately

satisfied for n << j. In such a situation the random process is said to

approach a weakly stationary state.

4
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Chapter 5

ENERGY DISSIPATION AND DAMAGE DIAGNOSIS

5.1 INTRODUCTION

There are two types of structural failure which are the result of the

dynamic response of a stable structure. The first type of structural

failure occurs when an extreme value of some measures of structural

response, such as z(t) or i(t) reaches an upper bound level or a
max max

lower bound level. The second type of structural failure occurs when the

accumulated damage reaches a fixed level such that the structure diminishes

in strength or resistance and a response that causes failure is realized.

In many situations, the accumulated damage may lead to structural failure

even when the input and response are of short duration. In a practical

sense, the true criterion of structural failure may depend on both peak

response and damage accumulation. However, at the present time there exists

no universal measure of structural damage. Consequently, a postulated upper

or lower bound for extreme responses, or a fixed level for accumulated

damage is used in many applications.

Many studies [3, 34, 35] have considered the potential for the first

type failure described above by using the threshold-crossing and the peak-

distribution to establish the reliability of structural systems. It can be

shown that the techniques discussed in Chapters 2 through 4 can be used to

develop the joint probability for displacement and velocity so that the

first passage problem can be solved. In the present study, only the second

type of structuril failure is considered. The cyclic damage may be defined

%



by the cyclic permanent sets such as Miner [36], Coffin [37], and Ju and Yao

[381, or the cyclic energy dissipation [391. The criterion in the present

chapter postulates that the accumulated damage is related to the energy

dissipation in the system during the response.

-5.2 ENERGY DISSIPATED RELATED TO DAMAGE'PROBLEMS

Experimental investigations [34] have shown that the energy dissipated

by a structural system due to load cycling is related to the residual

strength of the structural material. The energy dissipation may be classi-

fied in two parts, namely, energy dissipated in the spring and energy dissi-

pated in the damper. For a linear system, energy dissipation occurs only in

the damping element because no energy is dissipated by the spring. However,

in many situations, when the spring behaves nonlinearly, a hysteresis loop

is formed in the material stress-strain curve during the response motion.

The energy dissipated in the spring can then be defined by integrating the

stress-strain curve.

Consider a single element system with uniaxial load. The total energy

dissipated in the system can then be expressed

Et a 0 [cz + R(z)ldz, (5-1)

where z is the displacement response across the element, c is the element

viscous damping and R(z) represents the restoring force in the element

spring. First, consider the energy dissipated in the spring. If the

single-element system referred to Equation (5-1) is assumed to represent a
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4.

small element in a beam of a structural frame, the energy dissipated for

this small element due to material nonlinearity can be expressed as

E a AV R(e)dc, (5-2)

where AV is the volume of the small element in a beam under consideration.

Note that R(e) can be expressed by (see Figure 3.3)

R(e) - E(e(t) - c (t)), (5-3)
0

.

where E is Young's Modulus and (t), E (t) are the total strain and perma-
a

nent sets at time t, respectively. Substitution of Equation (5-3) into

Equation (5-2) yields

E - AV E E((t)- £(t))de. (5-4)

Equation (5-4) deterministically defines the energy dissipation for a small

element in a beam.

In the present study, the governing equation of motion of a nonlinear

system is decomposed into two equations, namely Equations (3-22) and (3-29),

[m]{j} + [c]fi} + {R(p)} " }, (3-22)

[m]{} + [cJ{Z} + [,(\p(t))]{Z} - JF} - [k]{p}. (3-29)

'
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It will be illustrated in Chapter 7, that Equation (3-22) governs the mean

to within 99 percent accuracy and Equation (3-29) characterizes the random

component of the response within 93 percent accuracy. Let the total energy

dissipation be decomposed into a mean and a fluctuating portion. The mean

energy dissipation due to the material nonlinearity can then be evaluated

based on Equation (3-22) which represents the mean characteristics of the

response. The energy dissipation obtained from Equation (3-29) then repre-

sents the fluctuating portion of energy dissipation.

However, note that the Equations (3-22) and (3-29) are derived in such

a way that the displacement, velocity and acceleration responses are repre-

sented only at the nodal points of the structure. In the present analysis

of a structural frame system, the energy dissipation is computed along the

beam rather than at the nodal points. Consequently, the fluctuation of

energy dissipation can not be obtained directly from Equation (3-29) which

governs the random component of the response. Therefore, in the present

investigation, only the energy dissipation related to the mean response is

considered. The energy dissipation, as computed from Equation (3-22),

represents the mean energy dissipation. When Equation (5-4) is used to

compute the mean energy dissipation for a small element in a beam, the total

energy dissipation for a beam due to material nonlinearity can be obtained

by summing up all the small elements. This can be stated mathematically in

the following form.

E v " E Es

AV

- VE (e(jht) - Eo(jAt)) (e((j+1)At) - e(jAt)), (5-5)

AV
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where E is the total energy dissipated in a beam. Equation (5-5) can beV-

used as a measure of energy dissipation in a beam due to material non-

linearity.

Next, consider the energy dissipated due to damping. Let E denote the
d

energy dissipated due to viscous damping in a single element,

Ed c zdz. (5-6)Ed

The integral can be transformed to

Ed - c jo z dt.

Under the assumption of response decomposition, we have

z + . (5-8)

Substitution of Equation (5-8) into Equation (5-7) yields

E = c f/(i2 + 2P2 + 2 )dt. (5-9)Ed

Taking the expectation on both sides of Equation (5-9), results in

E[EdI " c P 2dt + c E[ Idt. (5-10)

Use has been made of the fact that i is deterministic and Z is mean zero.

The mean energy dissipated in the damper is clearly separated into two

parts. The first term on the right side in Equation (5-10) represents the

energy dissipation from mean velocity respopnse, the second term represents

the energy dissipation from the variance of the velocity response. Note

that the velocity autocorrelation of the response was developed in Section

4.2.
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The mean energy dissipated in each element can be obtained using

Equation (5-10). When the energy dissipation components are summed the

total energy dissipated due to damping is obtained. The total mean energy

dissipated in the beam can then be obtained as

Et M Ed +E. (5-11)

Equation (5-11) represents the mean energy dissipation measure. The mean

square energy dissipation will include the cross term between spring and

damper, and the square terms of spring and damper. However, as stated

before, the Equation (3-29) can not be used to obtain the random component

of the energy dissipation. The cross moments between damper and spring

would need to be specified.to execute the mean square energy dissipation

analysis. Consequently, the mean square energy dissipation is very dif-

ficult to obtain.

The result from Equation (5-11) can be used to predict an upper bound

of the energy dissipation measure if the Markov inequality is considerd

[40].

P{X aa: E X (5-12)
a

where a is a non-negative constant. In view of this, the above results

obtained for mean energy dissipation can be used to make a probabilistic

statement about damage; that is, X is the cumulative energy dissipation and

a is the quarter cycle energy dissipation.

Numerical examples presented in Chapter 6 show the results of mean

energy dissipation computations.
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Chapter 6

URICAL EWMPLES

6.1 INTRODUCTION

In the previous chapters methods of establishing mean and mean square

displacement responses for both linear and nonlinear systems were developed.

The methods of computing the cross correlation between displacement, velo-

city and acceleration were also established. The equations developed to

evaluate the statistical response properties (such as Equations (2-10),

(2-22), etc.,) are all recursion relationships and can be computed directly

by numerical methods. The capability to obtain solution moments of a random

differential equation with nonlinear and random coefficients in terms of

recursion equations, makes the methods discussed in the previous several

chapters important. A computer code called FEDRANS (Finite Element Dynamic

and Random Analysis for Nonlinear System) was programmed and applied to

solve the equations in Chapters 2 through 5.

It is noted that for the problems involving nonlinear systems, a

specially discretized beam is necessary in order to evaluate the permanent

sets in Equations (3-13), (3-14) and (3-15). In the computer program

FEDRANS, a beam is divided into 10 segments in the longitudinal direction

and 10 layers through the thickness. A configuration of such beam is shown

in Figure 6.1.
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In Figure 6.1, along the longitudinal axis, x, the points where the

beam is segmented are identified by the equi-spaced coordinate values x(i),

i - 1, - 11. The beam is layered in the z direction in the same way,

except that the layers may not have equal thickness. The w(i),

i , 11 represent the widths at x(i) and z(i) locations. Note that

x(O) 0 and x(11) - L where L is the beam length as shown in Figure 6.1.

The integration is numerically computed with the trapezoid rule;

-C eo(Uz)zW (z)dz 
(

10
S Eo(Jgi)z(i)w(i)Az + I (Eo(j i) + E (j ll))Az hi( j ),

i-2 (6-1)

fLdu f °(uz)zw(z)dz 

( hl(i)Ax + hl(1) x for j < 11

i-2 h (j)

h (i)Ax + 1 (h (1) + h (11))Ax for j - 11

i-2 (6-2)

Svdu e(u,z)zw(z)dz =

10

j-h2(j)Ax + 1 (h2(1) + h2 (1l)) x, (6-3)
j-2

where Ax L/I1O and Az - c/5 and c is the half depth of the beam.

Simil'rly,
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f C(u,z)w(z)dz
-c

10

- eo(j,l)w(i)Az + 1 (e(j,l) + e(j,ll))Az - h3(J), (6-4)

i2

jLdu fCc0(u,z)w(z)dz

10 ai

1 h3 (j)Ax + 1 (h3(1) + h 3(l1))Ax. (6-5)

j-2

Equations (6-1) through (6-5) are the approximate expression of the inte-

grals in Chapter 3.

In Chapter 2 the eigenvectors for the vibrating system were used to

represent the displacement response in the development of a recurrence

relation. An iteration scheme was used to obtain the eigenvectors for the

vibrating system. The displacement vector can be developed by superposing

suitable amplitudes of the modes of free vibration. Since, the higher fre-

quencies usually do not significantly contribute to the displacement

response. It is sufficient to evaluate the lowest p modal frequencies

rather than the entire collection of frequencies. Some experiments in the

present study have shown that by choosing p - 3 it is possible to obtain

good accuracy even for large structural systems. The method of subspace

iteration was used because of its efficiency in obtaining the desired eigen-

vectors. A comprehensive discussion on the subspace iteration technique is

given in reference [41].
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When only one mode is used to approximate the response of the vibrating

system, the method of inverse iteration can be used. Also, the highest

modal frequency, w sometimes needs to be evaluated since the largest

time increment At can not be chosen greater than T . /4 where

T ,n - 2w/wmax . (Otherwise, stability problems will arise in using the
min max

central difference method). The method of forward iteration can be used

here to obtain the highest frequency w . Both the inverse and forward

iteration methods are described in reference [41].

In the present analysis, the lumped mass approximation is used. Con-

sider the uniform beam with six degrees-of-freedom as shown in Figure 6.2.

The mass values (elements in the diagonal element mass matrix) at the

degrees-of-freedom i, i - 1, .- 6 are

m(1) - m(4) - 0.5 PAL

m(2 ) - m(5) - 0.5 pAL (6-6)

m(3) - m(6) - 1/24 pAL
3

where p, A, L are the mass density, cross sectional area and member length,

respectively.

In order that the damped system is to possess normal mode oscillation,

the damping in the present analysis is assumed to be Rayleigh damping; that

is

[c] - a[m] + y[X] (6-7)
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where [c], [m], [k] are the damping, mass, and mean linear stiffness

matrices, respectively. The coefficients a, y are constant coefficients

that establish the damping. Note that the damping matrix is assumed to be a

constant matrix even though the stiffness matrix behaves nonlinearly.

6.2 MATRIX ALGEBRA

The equations established to compute the statistics of structural

response (such as Equations (2-22), (2-32), etc.,) involve matrix multipli-

cation. In FEDRANS the matrices are established in such a way that only '3

non-zero elements are stored. For instance, the stiffness matrix is

assembled and stored in an NxH rectangular matrix rather than an NxN square

matrix, where N is the total number degree-of-freedoms and H is the half

bandwidth of the stiffness matrix. In view of this, when two matrices are

multiplied together, the regular matrix multiplication needs to be modified.

Consider the following element in a matrix multiplication:

N

Ur QrsV ' (6-8)

where [Q] is an NxN matrix and {V} is an NxI vector. The resulting matrix

is (U}, which is Nxl. Let the matrix [Q] be stored in [W] which is NxH.

The transformation between these two matrices can be defined as

W - Q for s-r+1 > 0 b
r,s-r+1 r,s

W - Qs for s-r+1 0 (6-9)s,r-s+1 s,r" l
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Since [Q] is symmetric. Substituting Equation (6-9) into Equation (6-8)

yields the result:

q

Ur a (Wr,s.r+iVs + Ws,r-s+IVs ) '  (6-10)

s=p

where p and q are the lower and upper limits to be determined. Note that

the first term on the right side in (6-10) exists only when s-r+l > 0, and

the second term exists only when s-r+l S 0. Considering (6-9), p and q can

be expressed

1 if r-HSO
p " (6-11)

r-H+l if r-H k 1,

+H-1 if q < N
qmf7  

(6-12)q IN ~if q a N. (-2

Equations (6-10), (6-11) and (6-12) completely define the operation of

matrix multiplication. Similarly, Gaussian elimination can be modified by

an analogous approach.

6.3 EXAMPLE ONE

The first example considered is a single-degree-freedom structural

system, shown in Figure 6.3(a). At modal excitation, the lateral motion of "

the beam is defined by its end motion z(t).

The beam cross sectional dimensions are defined as in Figure 6.3(b).

The values of these cross sectional dimensions and the material properties

are given in Table 6.1.
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(a) -

(b)

Figure 6.3 The single-degree-of-freedom
system for Example I

,(t) F2 t)

3 5 K 1

460 t(se) 460 t(sec)
(a) (b)

Figure 6.4 Mean and autocovariance of the input

forcing function for Example I
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b f t f 'Iw tw E Oy IV P a y Lb. v p I
2uni t in in in in ksi ksi Ksec

in7

10. .56 4.-43 .34 29000 40 .25 .2836 .1 0 100

Table 6.1 The cross sectional dimensions
and the material properties for Example 1.

E is the mean value of Young's Modulus; a is the yield stress; v is theY

Possion's ratio; p is the mass density; a and y are the coefficients of

Rayleigh damping. The natural frequency, w , and damping ratio, 4, for

system were computed from the above data. The results are

- 0.68086 rad/secn

- 0.0734

The mean and autocovariance of the input forcing function are graphically

presented in Figure 6.4.

The mean and autocovariance of the response, which are given by

Equations (2-14) and (2-22) for the linear system, Equations (3-23) and

(3-33) for the nonlinear system, can then be computed using the data given

above. In the linear problem solution the yield stress a is assumed to be*y
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infinite. The mean and autocovariance of the response for both linear and

nonlinear systems were determined using the computer program FEDRANS. There

are two cases considered here for different values of 8, the coefficient of

variation of Young's modulus. (The coefficient of variation is the ratio of

the standard deviation and the mean of a random variable. See Equation

(2-27).) Figures 6.5 through 6.8 show the results for B - 0, and Figures

6.9 through 6.10 show the results for 8 - 0.1. Figures 6.5 and 6.6 show

the mean structural responses for the linear and nonlinear systems, respec-

tively, for the excitation shown in Figure 6.4. Figures 6.7 and 6.8 show

the variance of the structural response for the linear and nonlinear

systems, respectively, for the excitation in Figure 6.4. In both cases the

stiffness is deterministic, i.e., B - 0.

When the stiffness is random the mean response is approximately equal

to the mean response of the system whose stiffness is deterministic.

However, their variances of the responses are different. Figures 6.9 and

6.10 show the variance of the structural responses for the linear and

nonlinear systems, respectively, for the excitation shown in Figure 6.4 and

for B m 0.1. The response variances are greater in both cases, when the

structural stiffness are random than when the structural stiffnesses are

deterministic.

In order to compare the results of this anlysis with known results,

consider the response of a linear structure with B - 0, that is, the stiff-

ness term is deterministic. In such a case, Equatioal (2-10) can be solved

in closed form when the input is white noise with constant spectral density,

S 0 The result is [33]
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Figure 6.5 Mean of linear displacement
response for Example 1
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Figure 6.6 Mean of nonlinear displacement
response for Example I
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0.0022

N From EU.z (6-13)
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Figure 6.7 Variance of linear displacement response
for coefficient of variation B 0
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r 6.3 Variance of nonlinear displacement response
for coefficient of variation B - 0
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Figure 6.9 Variance of linear displacement response
for coefficient of variation 8 - 0.1
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WS exp(-2w nt) 2
E[Z 2 (t)I " 302 {1 - [d + 2(4w 2 + 4 WdSiin2wdt1}

2g m d (6-13)

where w d is the damped frequency. The spectral density S can be determined0J
in the following manner. Note that the mean square inpvt is assumed to be a

constant as shown in Figure 6.4(b). The constant mean square satisfies the

property of white noise

E[F(t)F(s)] - RFF(t-s) - 2iS 6(x) t - t-s0

S FF() - S (6-14)FF o

where SF(w) and RF(T) are the spectral density and the autocorrelation

function for the input, respectively. In order to obtain the value So,

consider a discrete time representation for the delta function, 6(T), as

shown in Figure 6.11.

The ideal white noise can be obtained as AT-*O. However, in practical

analysis, AT is chosen as a small value which never goes to zero. As a

result, the signal which is represented as a band-limited white noise. The

amplitude AT-  remains finite for band-limited white noise. In such a case,

the mean square value is evaluated at t - 0 and the result is

[ 2 2aE[F (t) - 1i (6-15a)

SE[F2(t) 12
o E[ 2 ()A (6-15b)

where E[F{t)]- 12W) as shown in Figure 6.4. (This relation can also be

derived using frequency domain arguments and the graph of the spectral

density of band-limited white noise.)
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Figure 6.11 Delta function 0
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Figure 6.12 Comparisons of stationary displacement response
variances for different small time increments, AT
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After the value S is obtained, Equation (6-13) can be evaluated. The

comparison between Equation (6-13) and the corresponding result obtained

using the formulas developed in this study is plotted in Figure 6.7. The

agreement between these results is good. The evaluation of approximation in

using FEDRANS as compared to the exact values can be made for various

values of AT more readily at stationary values. The stationary response can

be evaluated as t-f in Equation (6-13), that is

E[Z (t) EF 2(t)]A (6-16)
2 w 3m2

n

The ratio of FEDRANS approximation to the theoretical value (6-16) is shown

in Figure 6.12 for several values of AT (normalized by the period of the

single-degree-of-freedom system). When At is small the ratio is near one

and the error is very small. As AT increases the error increases. Spe-

cifically, the computed variance becomes greater than the theoretical

variance. It can be established that the error is less than 8 percent when

Atw /2w is less than 9 percent.n

The variance of velocity and acceleration were also computed for the

linear structural response. The results are plotted in Figures 6.13 and

6.14 for the case, 8 - 0.1. The cross correlations between displacement and

velocity, between displacement and acceleration, and between velocity and

acceleration were also computed and the results are plotted in Figures 6.15,

6.16 and 6.17. Note that E[VZ] and E[AV] approach zero after five or six

response cycles. Also note that E[AZ] is negative as might be anticipated.

The variances and correlations of displacement, velocity and acceleration

for nonlinear system response were also computed. The results are plotted
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Figure 6.13 Variance of linear velocity response
for Example 1, B 0.1
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Figure 6.14 Variance of linear acceleration response
for Example 1, B - 0.1
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Figure 6.15 Crossmoment between linear velocity
and displacement for Example 1, 8 - 0.1
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Figure 6.17 Crossmoment between linear acceleration
and displacement for Example 1, 0 * 0.1
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Figure 6.18 Variance of nonlinear velocity response
for Example 1. a - 0.1
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in Figures 6.18 through 6.22. Figures 6.18 and 6.19 show the variances of

velocity and acceleration for the nonlinear system. Figures 6.20, 6.21 and

6.22 show the crossmoments between velocity and displacement, acceleration

and velocity, acceleration and displacement, respectively, for the nonlinear

system. The mean energy dissipation for the nonlinear system, Equation

(5-5), is 0.281 (lb-in) which is small. This indicates that the yielding is

not significant and the damage of the structure is small.

6.4 EXAMPLE TWO

The second example considered is a structural system with two

degrees-of-freedom. The c3ntiliver beam, shown in Figure 6.23, with loading

at the free end becomes a two-degrees-of-freedom system if the deflection

and slope (lateral and rotational deformations) at the free end are inde-

pendent.

The cross sectional dimensions and the material properties are given in

Table 6.2.

unit in in in in ksi Le Ksec
in4 / i

10. .56 4.43 .34 2900C 40 .25 .2386 .05 0 50

Table 6.2 The cross sectional dimensions and
the material properties for Example
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Figure 6.21 Crossmoment between nonlinear acceleration
and velocity for Example 1, 0 0.1
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Figure 6.22 Crossmoment between nonlinear acceleration

and displacement for Example 1, B 0.1 %.
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The frequencies for this system can be computed based on the data given in

Table 6.2. The results obtained from computer program FEDRANS are:

W1 " 1.244 rad/sec,

W2 " 5.961 rad/sec,

in which the subindices 1 and 2 represent the corresponding

degree-of-freedom as shown in Figure 6.23. The time increment AT is then

chosen to equal 0.2 sec.

The mean and variance of the input are graphically shown in Figure

6.24.

The mean response for the linear system was computed and the result is

graphically shown in Figure 6.25. The mean value of the response of the

nonlinear system was also computed and the result is plotted in Figure 6.26.

The variances of the responses were also computed for the cases of

8 - 0 and 0.1. The system with B - 0 is considered first. The variance of

the displacement response of the linear system was computed. The result is

plotted in Figure 6.27. The variance of the displacement response of the

nonlinear system was also computed. The result is plotted in Figure 6.28.

The system with 8 - 0.1 is considered next. The variances of the

responses of the linear and nonlinear systems were computed, and the results

are plotted in Figures 6.29 and 6.30, respectively. Comparison of Figure

6.27 and 6.28 shows that both the linear and nonlinear systems approach a

state of stationary response with the same amplitude, and at the same time.

When 8 - 0.1, the varianc-s of both the linear and nonlinear responses
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Figure 6.28(b) Variance of displacement response,
nonlinear system, 0 - 0, at DOF - 2
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approach a stationary state much more slowly than the case where B 0 0. The

energy dissipation for the nonlinear system, Equationn (5-5), is 0.89E-02

(lb-in) which still is small.

6.5 EXAMPLE THREE

The third example considered is a one-story building as shown in Figure

6.31. This structural system has six degrees-of-freedom. The load is

assumed to act in the horizontal direction as shown.

The cross sectional dimensions and member properties for members number

1 and number 2 are given in Table 6.3.

bf tf bw  t E y v a y L

unit in in in in ksi ksi i n- -. in

3.35
1 5.03 .42 6.54 .25 2900C 40 .25 Z-7 15. .0005 240.

2 6.75 .46 6.54 .34 ft

Table 6.3 The cross sectional dimensions and
the material properties for Example 3

The lowest and highest frequencies for this system were computed by using

the computer program FEDRANS, and the results are:

J
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Figure 6.31 One story building frame
structure for Example 3
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Figure 6.32 Mean and autorovariance of the input
forcing function for Example 3
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(Umin 76.07 (rad/sec),

W - 1291.47 (rad/sec).max

The time increment At is chosen to be 1 ms. The mean and mean square inputs

are graphically given in Figure 6.32.

The mean displacement responses for the linear and nonlinear systems

were computed using the computer program FEDRANS, and the results are

plotted in Figures 6.33 and 6.34. Figure 6.33(a) shows the mean value of

the response at degree-of-freedom 7. Figure 6.33(b) shows the mean value of

the response at degree-of-freedom 8. Figure 6.33(c) shows the mean value of

the response at degree-of-freedom 9. Figures 6.34(a), (b) and (c) present

similar results for the nonlinear system.

The mean square displacement responses were computed for B - 0 and

0.01. For the case of B - 0, the variances of displacement responses for

the degrees-of-freedom from 7 through 9 were computed. Figure 6.35 shows

the results for the linear system, and Figure 6.36 shows the results for the

nonlinear system. Figures 6.35(a), (b) and (c) show the variance of dis-

placement (or rotation) response of the linear system at degrees-of-freedom

7, 8 and 9, respectively; Figures 6.36(a), (b) and (c) show the variance of

displacement (or rotation) response of the nonlinear system at degrees-of-

freedom 7, 8 and 9, respectively. For the case of B - 0.01, the variances

of displacement responses are computed for the same degrees-of-freedom.

Figures 6.37(a), (b) and (c) summarize results for the linear system, and

Figures 6.41(a), (b) and (c) summarize results for the nonlinear system.

From Figures 6.35 through 6.38 it can be concluded that the envelopes

of the variances of displacement responses at all the degrees-of-freedom
4J

possess approximately the same shape for the linear and nonlinear system.
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Figure 6 .33(c) Mean displacement response for
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nonlinear system at DOF - 7
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When the stiffness behaves randomly, the envelopes of the variances of dis-

placement responses at the various degrees-of-freedom still have the same

general shapes, however, some early-time rapid variation is present in the

response variance signals, especially for the nonlinear system.
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Chapter 7

DISCUSSION AND CONCLUSION

7.1 DISCUSSION

It was mentioned in Chapter 2 that the higher order terms which were

neglected in the present analysis can be included for SDF system when both

the random stiffness K and the displacement response random process Z(t) are

Gaussian. Consider for a linear, SDF system, the governing equation can be

represented by Equation (2-4),

J.:

m(4+) + c( iZ) + (X+K)(p+Z) 4 P + F. (2-4)

The mean response can be obtained by taking the expectation of the above

equat ion,

m + c + kA + E[KZI - (7-1)

where use has been made the fact that Z and K are both zero mean. The

remaining part which characterizes the random component of the response can

be obtained by subtracting Equation (7-1) from Equation (2-4),

m2 ci * \Z F- K4 + E[KZ] - KZ. (7-2)

".4,

4-

- • • q . . • o , u • . . . • • • . . . . - - ° . ,uS
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The mean and random component of the displacement response at time step j+l

can be evaluated similarly to Equations (2-13) and (2-19),

Pj+l = (A2j 3P A3 -I + At'*j - ]t E(KZ1)/AI, (7-3)

Z. (A Zi + A 3  22 [K K

Zj (A2Z + AZ I + At"Fj - At Kpi + At E[KZ.1 - At KZ)/A

(7-4)

where Al, A2, A3 are the same as given by Equation (2-15). The term E[KZj]
3

can be evaluated by postmultiplying Equation (7-4) by K and then taking

expectation,

E[KZ.] I (AE[KZj I ] + A3E[KZj- 2 ] - at2E[K - At2E[K Zj])/All

(7-5a)

where use has been made the fact that K is independent of F(t) and both are

,zero mean. It is noted that the last term in Equation (7-5a), E[K2Zj], is

the higher order crossmoment between K and Z.. However, when both K and
J

Z(t) are Gaussian distribution, this term is zero [331, i.e.,

E[K 2Z. 0.

Consequently, Equation (7-5a) can be reduced to

E[KZ (AE[ + [KZ_ ] - At E[K ]P )/A (7-'5b)

It is noted that the first and second term in Equation (7-5b) possess the

recurrent form of E[KZ.] and the last term is assumed known. Therefore,
.1@
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Equation (7-5b) can be evaluated under the assumption that K, Z(t) are

Gaussian distribution. Consequently, Equation (7-3) provides the exact

solution of the mean displacement response.

The variance of the displacement response can be computed similarly to

Equation (2-22),

2 2j2 2 t4E[K 2 ]Ij t4E 2

EIZ - A 2 E[Z. 2 1 + A 2E[Z2 + 2 2+ [AIt -

j+4 2 4
A .t 4E[KZ 1 2+ Lit 4E[K 2z:2] 2A A E[Z Z.-1 1

j j 2 3

- 2 tA E(KZ]IA - 2At2A2E[KZ21 - 2At 2A E[KZ. I]i. -
2 2jj 3 j-1j

- 2At2E[KZjZj_ 1]A3 + 2At
4 E[K 2Z ] )A-2. (7-6)

The new terms introduced in Equation (7-6) are E[KZ.], E[KZ.I, E[K2 Z],

E[KZ ZI] and E[K2Z21. However, under the assumption that K and Z(t) are

Gaussian, the following terms are zero;

E[KE'] - g[Kg-j - E[KZ.Z I - 0. (7-7)

The term E[K2Z ] can be reduced to the following lower moments under
J

Gaussian assumption,

21 ~1 2
E[K2Zj] - 2E[KZ ] + E[K'J E[Z.1. (7-8)J J

By using Equations (7-7) and (7-8), the variance of the displacement

response which is given by Equation (7-6) can be solved. The comparison of

the mean response between the one from equation (7-3) and the one from

Equation (2-14) is made by using the same system and excitation of Example 1

and the result is plotted in Figure 7.1. The error is less than 0.5
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Figure 7.1 The comparison of mean response between (1) including the
higher order terms and (2) omission of the higher order terms
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percent. The comparison of the variance response between the one from

Equation (7-6) and the one from Equation (2-22) is also made and the result

is plotted in Figure 7.2. The error is less than 8 percent.

From the above analysis, it can be Goncluded that the omission of the

higher order term is admissible if the stiffness does not behave extremely

random. The error occurred in variance response is higher than in the mean

response.

Also, from Equation (7-5b), it is noted that the joint moment between K

and Z(t) is related to the second moment of the stiffness only. In other

words, the joint moment between K and Z(t) can be computed without any

further assumption on the statistical property of the joint correlation

between Z(t) and K. This satisfies the real situations which occurred in

the nature since the correlation between stiffness and the response must

exist in a natural sense which should be evaluated as long as the statis-

tical properties of the stiffness and the excitation are known. Many

studies [9] have assumed that the correlation between K and Z(t) is known

which is not a reasonable assumption. The crossmoment between K and Z(t) is

computed and the result is plotted in Figure 7.3. Figure 7.3 shows that K

and Z(t) are negative correlated most of the time during the response cycle.

This satisfies the physical phenomenon since the higher tendency of the

stiffness will cause the lower magnitude of the response, as it should.

7.2 CONCLUSION

The present investigation has developed a structural damage theory to

evaluate the mean and autocovariarice functions, and the mean energy dissi-

pation for the response of a structural system with random, potentiallv
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elasto-plastic restoring force, subjected to random excitation. The problem

is treated by shifting the stiffness matrix, the excitation and the response

random processes about their means in such a way that the response is

resolved into two parts with a differential equation governing each part.

The first equation essentially governs the mean response. The second

equation essentially characterizes the random component of the response.

The response autocovariance function can be obtained using the equation that

governs the random component of the response.

The measures of response considered in this investigation are displace-

ment, velocity, acceleration and energy dissipation. The second order

moments of displacement, velocity and acceleration are obtained. The cross-

moments between displacement and velocity, velocity and acceleration,

acceleration and displacement are also evaluated. The results are presented

in discrete time. The first and second statistical moments in time history

are plotted in specific examples. The theory developed here is applicable

in the analysis of response to both stationary and nonstationary random

excitations. It follows that the damage theory developed in this study can

be used to assess the damaged, MDF structures. The computer program

developed is based on the finite element method.

When nonlinearity appears in the structural restoring force function,

it is assumed that the nonlinearity exiats in material property. The

material nonlinearity is assumed to be elasto-plastic. The cyclic elasto- I
plastic response of the structure is described in discrete time steps. At

each step in the response computation, an equivalent stiffness matrix is

obtained from the system restoring forces. These svstc-n restoring forces

are obtained by iterating the permanent set at each time step.
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The energy dissipation due to material nonlinearity is evaluated.

However, only mean energy dissipation, which can be used to predict an upper

bound on the total energy dissipation, is evaluated. When damage is assumed

to be related to energy dissipated it can be assessed based on this

analysis.

Several numerical examples are executed using the computer program

FEDRANS which is written based o-i the theory developed in this study and

appended in this report. The present theory can be applied to a generic

class of random excitations. These include white and non-white types. A

comparison of the present theory with published results is made for the case

of stationary white noise excitation when the stiffness is deterministic.

The results show good accuracy.

Other results of the numerical examples lead to the following conclu-

sions. (1) The response autocovariance function for the nonlinear system

has greater magnitude than the response autocovariance function for the

linear system. For instance, while the mean response for the nonlinear

system is 12 percent higher than that for the linear system, the standard

deviation for the nonlinear system is 35 percent higher than that for the

linear system. (2) The response autocovariance function for a system with

random stiffness is greater than the response autocovariance function for a

system with deterministic stiffness. For instance, while the stiffness

shows 10 percent variation, the standard deviation of the response for a

random stiffness is 5 times higher than that ior a determinsitic stiffness

system.

Therefore, the structural damage theorv developed in this study pro-

vides a base to develop a method for damagp diagnosis and reliability

assessment of structural systems with random characteristics excited by
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random excitations. The formalism of the present report enables us to

assess the damage for a generic class of MDF nonlinear system with elasto-

plastic material. Further, the present investigation constitutes as part of

the theory of damage diagnosis and makes the theory more satisfacotry.

The future study may include the following:

(1) Establishment of a damage model that allows the random component of

the stiffness matrix to be a matrix of random processes rather than a matrix

of random variables.

(2) Establishment of a damage model that involved the energy dissipa-

tion and maximum displacement. Also the establishment of the correlation

between these two is desirable in the analysis of damage theory.

(3) Evaluation of the second moment of the energy dissipation.

(4) Consideration of system damping as a random quantity.
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APPENDIX A

USER MANUAL OF FEDRANS

I
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1. TITLE (20A4)

1-80 TITLE Any alphanumeric identifier

2. CONTROL PARAMETERS (1115)

1-5 METHOD Static = 1, Dynamic = 2

6-10 KIND 1 Plane truss

2 Plane frame

3 Space truss

4 Space frame

11-15 NUMNP Total # of nodes(including supports)

16-20 NSTRUT # of Two-force members

21-25 NBEAM # of Beam members

Z6-30 NMTYPE 4 OF MEMBER TYPES IN MEMBER LIBRARY

(A, I,... )

31-35 NUMEM Total # of members

36-40 NUMAT # OF DIFFERENT MATERIALS

C E, POISSION RATIO, MASS DENSITY,...)

41-45 NR.NP ,,1 of constraint (support) nodes

46-50 NMREL # of member releases

51-55 NLC 10 of loading conditions

= 0, For dynamic analysis (no use for

dynamic analysis, but still need input)

3. PRINT OUT CONTROL CARD (315)

1-5 WSTIF Print out .stiffness matrix(0=NO,l=YES)
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Also control the printing out for all the

calculation of intermediate steps in

random analysis. Also in nonlinear analy-

sis, it controls the offset print out.

For every case, 0: NO, 1: Yes

6-10 WFRSTIF Print out reduced stiffness matrix

Also control the stiffness print out

for nonlinear analysis.

11-15 WLOD Print out Loading conditions

Also control the final offset print out

for every case, 0: No, 1: Yes

Card 4-6 are read only for METHOD a 2

4. DYNAMIC CONTROL CARD (315)

( This card read only for MET OD=2, otherwise, skip this

card, go directly to card 7)

1-5 MASS 0: No concentrated mass added

>1: add MASS times concentrated mass

6-10 INLOD l=Loading function read from data card

2-Read from data file

11-15 MDI Method of direct integration

lNewmark Meth'od

2-Central difference method

.11
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5. CONCENTRATED MASS CARD (4(i5,el0.5))

( read only for mass >0, otherwise, skip this card )

6. DAMPING CONTROL CARD (2F10.4)

1-10 ALPHA C a ALPHA * M + BETA* K

11 -20 BETA

7. MEMBER PROPERTY TABLE (6E10.4)

Repeat NMTYPE times

1-10 tf(im) (For rectangular

11-20 bf(im) crossection, use

bw,,4*tf; tw-bf)

21-30 tw(im)

31-40 bw(im)

41-50 XJ(im) Torsional constant Ix

51-60 AVY(im) Effective shear area for shear in Y-Dir

61-70 AVZ(im) Effective shear area for shear in Z-Dir

71-72 MCURV(im) Member curvature index.

0-straight

l-curve

8. MATERIAL DATA (3EI0.4)
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Repeat NUMAT times, one card for each different material

1-10 E(im) Young's modulus of elasticity

11-20 sigma(im) yield stress

21-30 PR(im) Poisson's ratio

31-40 RHO(im) Mass density

9 NODAL POINT COORDINATES (iS,3E10.4)

Repeat NL'MNP times (one card for each nodal point)

1-5 NN Number of nodal point

6-13 x(nn) x-coordinate (2-dim, use x-y plane)

16-25 Y(nn) Y-coordinate

26-35 Z(nn) Z-coordinate

10. 1EMBER DESCRIPTIONS (615,3E10.4)

Repeat NUMEM times- one card for each member

1-5 ID Member I.D., (L.E. NUMEM)

6-10 N.D(id,l) Nodal point number, node i

11-15 ND~id,2) Nodal point number, node j

16-20 MTYPE(ID) Type of member (from library)

21-25 MID(id) Material I.D. number

26-30 MLC(id) Not presently used

31-40 ALFA(id) Angle of rotation of the principal y-axis

41-50 THETAI(id) Specified rotation about z-axis

51-60 THETAJ(id) Specified rotation about Z-axis
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11. B.C. (13,Il,,611,6F10.4)

1-3 N Number of restrained node

4 NrYPE(n) B.C. Type 0= No I.C.

5-10 IR(n,j) A six digit integer identifying type of

constraint. 1= constrain, 0free

( for plane frame, only 3 was read which

is (x,y,zz) )

11-20 UI(n,l) Specified IC(translation in global x-dir)

21-30 UI(n,2) in y-direction (Use only for static

31-40 UI(n,3) in z-direction analysis, In dynamic

41-50 UI(n,4) in x rotation analysis, read from

51-60 UI(n,5) in y rotation card 23)

61-70 UI(n,6) in z rotation

12. MEMBER RELEASE (13,211)

Only for NMREL GT 0

These data are required for members with initially spe-

cified releases only. Repeat NMREL times (one card for

each released member)

1-3 IM Member number

4 MREL(im,l) Release code for node i of member as

specified im member data

5 MREL(IM,2) Release code for node j of member

The release code is specified by a two

digit integer: either 1 or 0 is used

depending on whether the I or J nodes of
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the member are released or not released %J.

respectively.

13. LOADING PARAMETERS (215, 3F10.4)

Only for static analysis, otherwise, skip this card. -

This card repeated NLC times, one for each load data set

1-5 XLND Number of nodes with concentrated loads

6-10 NLMEM Number of members having loads along

their length between nodes %

11-20 AX Blank

21-30 AY g-Acceleration in y-direction

31-40 AZ Blank

'ft

14. CONCENTRATED NODAL LOADS (15,6F10.4)

Only for static analysis, otherwise, skip this card

One card per loaded node for each loading condition is

required.

1-5 NL Node number

6-15 P(1) Component of concentrated force in

global x-direction

16-25 P(2) Force in global y-direction

26-35 P(3) Focce in global z-direction

36-45 P(4) Component of concentrated couple

about global x-axis

46-55 P(5) Couple about global y-axis
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56-65 P(6) Couple about global z-axis

15. Member Load

Only for static analysis, otherwise, skip this card.

Two cards per loaded member (NLNEM members) are required

for each loading dondition involing members with inter-

mediate loads.

1-5 MN Member number

6-10 I Node number

11-20 P(l) Fixed end axial force at node I

21-30 P(2) Fixed end y-shear at node I

31-40 P(3) Fixed end z-moment at node I

41-50 P(4) Fixed end x-moment (torque) at node I

51-60 P(5) Fixed end y-moment at node I

61-70 P(6) Fixed end z-moment at node I

SECOND CARD (5x,I5,6f10.4)

1-5 Blank

6-10 I Node number

11-20 P(7) Fixed end axial force at node J

21-30 P(8) Fixed end y-shear at node J

31-40 P(9) Fixed end z-shear at node J

41-50 P(10) Fixed end x-moment (torque) at node J

51-60 P(11) Fixed end y-moment at node J

61-70 P(12) Fixed end z-moment at node J
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(Card 16 to 25, read only for dynamic anlaysis)

16. DYNAMIC LOAD INPUT ( 215,flO.4)

1-5 IRANDK Random analysis, =1: No, =2: yes

6-10 LON Linear or nonlinear analysis

=1: Linear, 2: Nonlinear

11-13 NDOFL Total " dof that have load

16-20 NTI Total # of time increments

21-30 DT Delta t

17. LOAD DESCRIPTION (repeat NDOFL times) (21)

1-5 NDOF(i) , of dof that has load acting

6-10 NTPDL # of points when card is applied.

(see next card for the meaning of ns(i,j))

18. LOADS DESCRIPTION 5(15,fl0.5)

Repeat NTPDL TImes

1-5 NS(ndof(i),l) 4 increment of time when load is specified. "

6-15 DL(ndof(i),i) corresponding amplitude

16-20 NS(ndof(i),2) same as above -6

21-30 DL(ndof(i),2)

31-35 NS(ndof(i),3) (if necessary)

36-46 DL(ndof(i),3)
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19. CROSS TERM CONTROL CARD

This card read only when IRAN DM=2

1-5 ICROS Flag indicating compute cross moment

0:NO, I:YES

6-10 IVV Flag indicating compute E(VV)

O:NO, 1:YES

11-15 IAA Flag indicating compute E(AA)

O:NO, I:YES

16-20 IVZ Flag indicating compute E(VZ)

0:NO, I:YES

21-25 IAZ Flag indicating compute E(AZ)

O:NO, l:YES

26-30 IAV Flag indicating compute E(AV)

O:NO, l:YES

Card 20-22, read only for IRANDM=2, otherwise, skip it

20. COVARIANCE MATRIX iNPUT CONTROL CARD AND MODAL ANALYSIS ,S

CCN'"ROL CARD

1-5 NCVDF Total pairs # DOF in covariance

matrix

6-10 NEROOT Number of eigenvectors required to

represent the mean response

11-15 NSMAX Maximum number of sweeps allowed in

subroutine JACOBI

16-25 CORRI Coefficient of variation of Young's

modulus (beta) I
1 2 1l _-
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21. PAIRS DESCRIPTION

Repeat NCVDF times, each time read one card

1-5 Nl(I) Pair for DOF

6-10 N2(I)

11-20 NTACV Total # needed to describe Ax in time

domain

22. AMPLITUDE DESCRIPTION IN COVARIANCE MATRIX

Repeat NTACV Times

1-5 NT(nl(i),n2(i),j) Time increment that have amplitude

change

6-15 AX(nl(i),n2(i),j) The corresponding amplitude

23. PRINT OUT DETAIL CONTROL CARD (715)

1-5 INPT Initial # dof for print out

6-10 IFPT Finial # dof for print out

11-15 JPNP Jump number for Print out

16-20 INTPT Initial # for Time print out

21-25 IFTPT Final # for time print out

26-30 JPNT Jump increment for print out

31-35 INIT Initial condition

O=Generate by program

l=Read from data card

36-40 IPLOT Plot control

O=direct print out

l--write into a data file

122
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24. I.C. (only for INIT=1)

Repeat NUMEQ times

1-10 xdp(ii,l)

11-20 xld(ii,l)

21-30 x2d(ii,l)

25. This card inputs a trial number in sub-space iteration.

Usually, set it to unity. If the object matrix is not

positive define, change to another value until the

object stiffness matrix is positive definite. A better

way in second try is to set this number as negative.

( Random format ) TRIX

'SO
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subroutine beam (idi,j)
common/par/ method,kind,nunp ,nstrut ,nbeam,nuiem ,nrnp ,nmrel ,mband,

1 nlnd,nlmem,neq,nqonumeqfllc ,nif,wstif ,wrstif,wlod

common /nod/ x(25),y(25),z(25),ntype(25),ir(25,
6),ui( 25 ,6)

common/mem/ ztype(50),nd(50,2),mid(5O),mlc(50),alfa(50),
1 mrel(50,2),thetai(50),thetaj(50)

common/mlib/ xa(Z5),zi(25),yi(25),xj(25),avy(
25),

avz(25),mcurv(25)
common/mat! e(5),sigma(5),epsilnC5),pr(5),gCS),rho(5)
common /stif/ s(12,12) ,r(3,3) ,t(12,12) ,st(12,12) ,tf(12),p(12)

double precision s~r,t,st,tf,sl,s2,s3,s
4 ,sS ,sl,dsqrt,xl,x2,yl,

1 y2,zl,z2
xlx(i)
x2=x(j)
yl-y(i)
y2---, Q)
zlaz(i)
z2=z(j)
sldsqrt((x2-x)*2+(y2yl)f-,2+(z2zlY"

2 )
c generate element stiffness matrix (S)

mmid(id)
nmtype Cid)
yme Cm)
smg (i)
slxa(n)*yn/sl
s2=sin~xj (n)/sl
s3-yin*zi(n)Isl
s4=ym*yi(n) /sl
s5=3.*ym*zi(n)I (sl**3)
do 10 'iil,neq
do 10 jjl,neq

10 s(ii,jj)0O.0
12 s(l,l)=s1

s(1,7)=-sl
* s(3,3)=12.*s4/ (sl**2)

s(3,5)=-6.*s4/sl
s (3 ,9)-s (3 ,3)
s (3, 11) =s(C3 ,5)

s(4,4)=s2
s(4, l0)=-s2
s(5 ,3)4.*s4
s(5,9)=6.*s4/sl
s(5,11)=2.*s 4

5 (7 ,7)=s1

s(9, l1)=6.*s4/sl
s(10, 10)=s2
s(11,11)=4.*s4
if (mrel(id,l).ne.0.nd.nrel(id,2).le.O) go to 35

if (mrel(id,1).ne.0.and.inrel(id,2).eq.O) go to 30

if (irel(id,l).eq.0.Sxld.irel(id,2).ne.O) go to 25

c full continuity
s(2,2)=12.*s3/ (sl*f*2)
s(2,6)=6.*s3/sl
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s (2, 8)-s (2, 2)
s (2, 12)=s(2 ,6)

s(6,6)-=4.*s3
s(6,8)=-6.*s3/sl
s(6,l2)=2.*s3
s (8, 8)=12. *s31 (sl1**2)
s(8,12)=-6.*s3/sl
s(l2,12)=4.*s3
go to 35

c hinge right end
25 s(2,2)=s5

s(2,6)=sS*sl
s(2,8)=-sS
s(6,6)=s(2,6)*sl
s(6,8)=-s(2,6)
s(8,8)=s5
go to 35

c hinge left end
30 s(2,2)=s5

s(2,8)=-s5
s(2,12)=s5*sl
s(8,8)=s5
s(8,12)=-s(2,12)
s(12,12)=s(2, 12)*sl

c symmetrize (S)
35 do 15 iil,neq

do 15 jjii,ne-q
15 s(jj,ii)=s(ii,jj)

c transform (S) to global coordinates
14 call rotate (l,id)

return
and

P10
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subroutine beam2 (id,i,j)
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common /nod/ xC25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
common/mem/ mtype(50),nd(50,2),mid(50),mlc(50),alfa(50),

1 mrelC5O,2),thetai(50),thetaj(50)
common/mlib/ xa(25),zi(25),yi(25),xjC25),avy(25),

avz(25).,mcurv(25)
common/mat/ e(5),sigma(5),epsiln(5),pr(5),g(5),rho(5)
common /stif/ sC12,12),r(3,3),t(12,12),st(12,l2),tf(12),p(12)
common /xmss/ xms(l2)
double precision s, r,t,st,tf,sl,s2,s3,sl,dsqrt,xp,yp,xms
xpx~j) -X(i)
yp-Y(J) -y(i)
s ldsqrt (xp**2+yp**2)

c generate the element stiffness matrix (s)
m-mid(id)
nmtype (id)
ym--e (in)
area=xa~n)
rhrho Cm)
sl-xa~n)*Ym/sl
s2=zi~n)*y12/s 1
s3=3.*ym*zi~n)I Csl**3)
do 10 iil,neq
do 10 jj~l,neq

10 s(ii,jj)=0.
s(l,l)=sl
s(1,4)=-sl
s(4,4)=s1
if (mrel(id,l).ne.0.and.mrel(id,2).ne.0) go to 35
if (mrel~id,l).ne.0.and.mrel(id,2).eq.0) go to 30
if (mrel(id,l).eq.0.and.mrel(id,2).ne.o) go to 25

c full continuity
s (2,2)=12.*s2/ Csl**2)
sC2,3)=6.*s2/sl
s (2 )=-s (2,2)
s (2,6)=s (2,3)
s(3,3)=4.s2
s(3,5)=-6.*s2/sl
s(3,6)=2.*s2
s(5,5)=s(2, 2)
s (5,6)=-s(2, 3)
s(6,6)=4 .*s2
go to 35

c hinge reight end
25 sC2,2)=s3

s(2,3)=s3*sl
s3s(2, )*sl
s(3,5)-s(2,3)*s
s(5,5)=-s3)

c hine let en

30 s(2,2)=s3
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sC2,5)=-s3
s(2,6)=s3*sl
:(5,5)=s3
s(5,6)--s(2,6)
s(6,6)=s(2,6)*sl

c symmertize (s)
35 do 15 ii-l,neq

do 15 jj=ii,neq
15 s(jj,ii)=s(ii,jj)
c transform (s) to global coordinates

call rotate (l,id)
c Form Mass matrix

go to (99,101) ,method
101 do 100 ii=l,neq

xms (ii)=0.
100 continue

cl=rh*area*sl*. 5
c2=rh*area*s l*3/24.
xms (l)=cl
xms (2)=c1
xms (4)-cl
xms(5)=cl
xms(3)=c2
xms (6)=c2

99 return
end
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subroutine bound( ibnd ,high)
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif ,wstif,wrstif,wlod
common/sly! aC50,25),b(50)
common/xmd/ xmass(S0) ,damp(50,23)
common /nod/ x(25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
double precision a,b,xmass,damp
go to (20,25), ibnd

20 nhw-mband-l
do 60 n1l,numnp Of

c compute control counters
do 5 kk=l,nq
k-nq*n. (nq-kk)
j l=k-nhw
if(jl) 10,10,15

10 iil1
go to 30

15 iijl
C reduce row of (A)

30 if (ir(n,kk).eq.0) go to 5
if (high.Le.l.) go to 81
a(k,1)=a(k,1)*high
go to 5

81 go to (35,34), method
34 damp(k,1)=1.0
35 a(k,l)=1.0

C reduce mass matrix
go to (37,36) ,method

36 xmass(k)=l.0
37 do 40 j1l,nhw

l=j+1
go to (40,48), method

48 damp(k,1)0O.0
40 a(k,l)0O.0

c reduce column of (A)
if(k-1) 5,5,50

50 jjk-1
do 55 jii,jj
kl1k-j +1
go to (55,54), mehtod

54 damp(j,kl)0O.
55 a(j,kl)0O.0
5 continue

60 continue
go to 85

c reduce (B)
25 do 80 n=1,numnP
65 do 70 kkl,nq

k-nq*n- (nq-kk)
if (ir(n,kk).eq.0) go to 70

75 b(k)=ui(n,kk)
70 continue
80 continue
85 continue
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return
end
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subroutine choles (it)
common/par/ method,kind,nulmnp,nstrut,nbeam,numem,nrnp,nmrel,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common/chol/xmc(50 ,25)
common/soil xdp(50,3),xld(50,2),x2d(50,3)
double precision xmc,diagl,airl,suml,dsqrt,xdp,xld,x2d

c
if (it.ge.2) go to 123
nhw-mb and-i
n=numeq

100 nred-O
itrig=0
1 immband

101 if(nred+1-n) 102,500,500
102 nred--nred41

diagl-xmc(nred, 1)
if (diagl-1.Od-30) 601,601,110

110 diagldsqrt(diagl)
c go to 601 if matrix is singular or not positive define
c divide roe by square root of diagonal element

111 do 113 j=1,lim
113 xmc(nred,j)-xmc(nred,j)/diagl

c reduce remaining block of numbers
201 do 251 i1l,nhw

l-nred+i
if(1-n) 211,211,251

211 airl=xmc(nred,i+l)
c skip this row if multtiplier air is zero

if(airl) 221,251,221
221 do 2.31 ji,nhw

m1l+j -i
231 xmc(1,m)=-xmc(1,m)-air1*xmc(nred,j+1)
251 continue

go to 101
601 itrig-nred
500 if(itrig) 600,610,600

c singular matrix
600 write(6,602) itrig
602 format(lx,'Singular Matrix at Cholesk@a NRED =',i4)
610 continue

c reduce the right hand sides

123 continue
nred0 I

301 if(nred+l-n) 302,401,401
302 nred-nred+1

c divide row by square root of diagonal element

xdp(nred,3)=xdp(nred,3)/xmc(nred, 1)

creduce remaining block of numbersI
l-nred+i
if(1-n) 311,311,351 -

311 xdp(1,3)=xdp(1,3)-xmc(nred,i+l)*xdp(nred,3)
351 continue
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go to 301
c back substitution
401 xdp(n,3)-xdp(n,3)/xmc(n,1)

nln-1
do 451 iil,nl
i-n- ii
sumlO0.0
do 421 jj1l,nhw
mjj+i
if(n-m) 451,421,421

421 sumlsuml+xmc(i,jj+1)*xdp(m,3) J
451 xdp(i,3)=(xdp(i,3)-suml)/xmc(i,l)
25 continue

700 continue
return
end

%
% J

132



subroutine curvbm (id,i,j)
common/par/ method,kind,nuninp,nstrut,nbeam,numem,nrnp,nmrel,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif ,wrstif ,wlod
common/nod/ x(25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
common/mlib/xa(25) ,zi(25) ,yi(2 ) ,rr(25) ,avy(25),

1 avz(25) ,mcurv(25)
common/mem/mtype (50) ,no(50,2) ,mid(S0) ,mlc(50) ,alfa(50),

mrel(50,2),thetai(50),thetaj(50)
common/mat/ee(5) ,sigma(5) ,epsiln(5) ,pr(5) ,gg(5) ,rho(5)
common/stiff s(12,12),q(3,3),t(12,12),st(12,12),tf(12),p(12)
double precision s ,q,t,st,tf,r,beta,cb,sb,a1 ,bl,cl,dl,el,

1 ~a,-bc,d,e,f,g,sl,dsin,dcos,thi,thj ,dabs
m~mid( id)
n=mtype (id)
ymee(m)
r--rr(n)
thi=thetai(id)/57 .2957795
thj--thetaj (id)/57.2957795
beta=dabs (thj -thi)
do 10 iil,neq
do 10 jjl,neq

10 s(ii,jj)=0.0
c generate element stiffness matrix (S)

cbdcos (beta)
sbdsin(beta)
a lbeta -sb
blcb+0.5*sb~sb-.1.0
cl=1.5*beta-2.0*sb+(dsin(2.0*beta))/4.0
dl1 5*beta-(dsin.(2.O*beta))/4.0
elcb-1. 0
a=e 1*e 1/beta -dl

* bb1-a1*el/beta
* ca1*d1-b1*e1

dal*a1/beta-cl
ec1*e1-a1*b1
fb1*b1-c1*dl

s(1,2)=sl*b

s(l ,3)=s1*c*n/beta
s(1 ,4)=-s1*(a*cb+b~~sb)
s(1 ,5)=sl*(a*sb-b*cb)
s(l,6)=s1*(a*(cb-1. )+b*sb-c/beta)*r
s(2,2)=sl*d
s(2, 3)=s l*e*r/beta
s(2 ,4)=-s1*(b*cb+d~sb)
s(2,5)=sl*(b*sb-d*cb)
s(2,bj=s1*(b*(cb-1. )+d*sb-e/beta)*r
s(3 ,3)=s1*f*r*r/beta
s(3 ,4)=-s1*(c~tcb+e*sb)*r/beta
s(3 ,5)s1*(c*sb-e*cb)*r/beta

s(3,6)=s1*(c*(cb-1. )'e~sb- f)*r*r/beta

s(4,4 
=sl~ a133



s(4,5 )=-s 1*b
s(4, 6)=s l:*-c*r/beta
s(5 ,5)=sl~d
s(5 ,6)=-sl*e~r/beta
s(6, 6)=s Vcf*r*r/beta

c symmetrize (S)
do 15 iil1,6
do 15 jjl1,6
s(jj ,ii)=s(ii,jj)

15 continue
c Transform (S) to global coordinates

stldsin(thi)
ctldcos (thi)
stZdsin(thj)
ct2=dcos (thj)
do 20 iil1,6
do 20 jjl1,6U

20 t(ii,jj)=O.
t(l,l)=ctl
t(l,2)=stl
t(2,l)=-stl
t(2,2)=ctl
t(3,3)=l.
t(4,4)=ct2
t(4,5)=st2
t(5 ,4)=-st2
t(5 ,5)=ct2
t(6,6)=l.
call rotate (l,id)
return
end
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subroutine dl (i)
integer wstif,wrstif,wlod
common/par! method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif ,wstif,wrstif,wlod
common/soil xdp(50,3),xld(30,2),x2d(50,3)
common/dlod/ dt,nti,ns(50,10),dl(50,l0),ndof(10),ndofl
common/sly! a(50,25),b(S0)
common/xmd/ xmass(50) ,damp(50,25)
common/matrix/ la(50),tl(50),t2(50),f(50)
double precision a,b,.xmass ,damp,xdp,xld,x2d,tl,t2,f
double precision df,xaml,xam2

c Find the forcing fn at i'th step
do 150 ii=1,numeq

c Pick out #' DOF that has load
do 160 jj1l,ndofl
if (ii.eq.ndof(jj)) go to 161

160 continue
f (ii)=0.
go to 150

c Pick out n'th point that has amplitude change
161 1c~la(ii)

if (i.eq.ns(ii,lc)) go to 170)

f(ii)=dl(ii,lc-l)+df*(i-ns(ii, ic-i))
go to 150

170 f(ii)=dl(ii,lc)

150 continue
if (wstif.eq.0) go to 155
write (6,2)

2 format (' the forcing function is '
write (6,1) (f(ii),ii=,numeq)

1 format (6e13.5)
c Form effective load vector
c ([K )-/t2[] and l/dt*- [MI]-.5*dt*(C]

155 do 200 iil,numeq
tl1(ii) =0.
t 2 (ii) =0.
call range (ii,numeq,mband,mg,mbd) -do 200 ij-mg,mbd
msij-ii+1
if (mns) 201,201,202

go to 200
202 if (is.eq.1) go to 203

* xam2=a(ii,ns)
xaml=-damp(ii,ins)*.5/dt
go to 204

203 xa2=a(ii,ins)-2.*xmass(ii)/dt*-*2
xaml=-damp (ii ,ns )*. 5/dt+xmass (ii) /dt *2'

204 t2(ii)-t2(ii)+xan2*xdp(ij ,2)
tl(ii)=t1(ii)+xaml*xdp(ij, 1)

*200 continue
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do 210 iil,numeq

210 continue
call choles Ci)

c calculate velocity and acceleration
do 220 iil,numeq

xld~ii,1)=(xdp~ii,3)-xdp(ii, 1))/(2.*dt)
220 continue

return
end
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subroutine d2 Mi
integer wstif,wrstif,wlod
common/par/ method ,kind,nunp ,nstrut ,nbeam,numem ,nrnp ,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif ,wstif ,wrstif ,wlod
common/random/ irandm,ncvdf,ntacv,nl10),n2(10),ax(50,50,10),
1 nt(50,50,10) ,lon,nroot,nsmax,corri
common/dlod/ dt,nti,ns(50,10),d1(50,10),ndof(l0),ndofl
common/rrl/ zz(50,5O,3),z12(50,50,2),z2(50,50,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,50)
common/rr3/ al(50,50),a2(50,50),a3(50,50),xLa(50,50),La2(50,50)
double precision al,a2,a3,xla,rf,rz,rzl,rzl2,zz,z12,z2 ,ddx

c Pick out Rff at time step i
icountu-l
do 410 ii=l,numeq
do 410 jj=l,numeq
do 471 kk-icount,ncvdf
if (ii.eq.nil(kk).and.jj.eq.a2(kk)) go to 411

471 continue
rf(ii,jj)=0.
go to 410

411 icounticount+l
Lcl=La2(ii,jj)
if (i.eq.nt(ii,jj,lcl)) go to 412

C Linear interpolation
ddx--ax(ii,jj ,Lcl)-ax(ii,jj ,Lc1-1))/
1 (nt(ii,jj,Lcl)-nt~ii,jj,Lcl-1))

go to 410
412 rf(ii,jj)=ax(ii,jj,lcl)*dt**~4
470 1a2(ii,jj)1la2(ii,jj)+l
410 continue

c Evaluate A2 zz(i,j,2) A2(T)
do 420 ii=l,numeq
call range (ii,numeq,mband,mg,mbd)
do 420 jj-lnumeq
xla(ii,jj)-O.
if (a2(ii,ii).eq.l.0 .or.a2(jj,jj).eq.1.) go to 420
do 421 kkmg,mbd

421 continue
420 continue

do 425 iil,numeq
call range (ii,numeq,mband,mg,mbd)
do 425 jjii,numeq
rz (ii, jj)0O.
if Ca2(ii,ii).eq-l.0.or.a2(jj,jj).eq.1.) go to 425
do 426 kkinmg,mbd
rz~ii,jj)-rz(ii,jj)+a2(ii,kk)*xla(jj ,kk)

426 continue
425 continue

if (wstif.eq.0) go to 150
write (6,1)

1 format ('rz(i,j)')
do 3 iil1,rumeq
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3 write (6,2) (rz(ii,jj),jj=l,numeq)
2 format (6el3.5)

C Evaluate A3 zz(i,j,l) A3(T)
150 do 430 iil,numeq

call range (ii,numeq,mband,mg,mbd)
do 430 jj-l,numeq
xla~ii,jj)0O.
if (a3(ii,ii).eq.1.0.or.a3(jj,jj).eq.l.) go to 430
do 431 kkuig,mbd
xla(ii,jj)=xla(ii,jj)+a3(ii,kk)*zz(kk,jj ,l)

431 continue
430 continue

do 435 iil,numeq
call range (ii,numeq,mband,mg,mbd)
do 435 jjii,numeq
rzl(ii,jj)0O.
if (a3(ii,ii).eq.l.0.or.a3(jj,jj).eq.1.) go to 435
do 436 kkmg,mbd
rzl(ii,jj)=rzl(ii,jj)+a3(ii,kk)*xla(jj ,kk)

436 continue
435 continue

if (wstif.eq.O) go to 151
write (6,4)

4 format ('rzl(i,j)')
do 5 ii=l,numeq

5 write (6,2) (rzl(ii,jj),jj=l,numeq)
c temporary sum

151 do 520 ii=l,numeq
do 520 jjii,numeq

520 rf(ii,jj)=rf(ii,jj)+rz(ii,jj)+rzl(ii,jj)
return 1
end

V.

138.

17



subroutine d3
integer wstif,wrstif,wlod
common/par/ method,kind,numnp ,nstrut ,nbeam ,nuinei,nrnp ,ninrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common/random/ irandm,ncvdf,ntacv,nl(10),n2C10),axC50,50,10),

1 nt(50,50,l0),lon,nroot,nsmax,corri
common/soil xdp(50,3) ,xld(50,2) ,x2d(5O,3)
common/slv/ a(50,25),b(50)
common/dlod/ dt,nti,nsCSO,10),dl(50,10),ndof(10),ndofl
common/matrix/ la(50),tl(50),t2(50),f(50)
common/kuz/ rx(50,50,3,8),ck(B)
common/mul zz(50,50,3),z12(50,50,2),z2(50,50,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,50)
common/rr3/ al(50,50),a2(50,50),a3(50,50),xLa(50,50),La2(50,50)
common/eign/ eigvec(50,24),rho(24),a4(50,50)
double precision a,b,xdp,xld,x2d,tl,t2,f,rx,eigvec,rho,a4,ck
double precision al,a2,a3 ,xla,rf,rz,rzl,rzl2,zz,z12,z2

c Evaluate K b ZQj)T
do 465 npl,nroot

c first: K b xdp(i,l)T K
do 445 iil,numeq
tl(ii)=0.
call range (ii,numeq,mband,ng,inbd)
do 445 jjmg,mbd
if (xdp(jj,l).eq.0.) go to 445
sjj -ii+1

if (ins) 446, 446, 447
446 tl(ii)-t1(ii)+a(j,ii-j j+l)*eigvec(j ,np)

go to 445
447 tl(ii)=-tl~ii)+a(ii,ins)*eigvec(jj ,np)
445 continue

do 300 ii=l,numeq
do 300 jjl,numeq

300 xla(ii,jj)--tl(ii)*xdp(jj,l)
do 310 iil,numeq
call range (ii,numeq,nband,ng,inbd)
do 310 jjl,numeq
rz (ii jj) =0.
if (a~ii,1).eq.1. .or.a(jj,1).eq.1.) go to 310
do 311 kkmg,inbd
sj j-kk+l

if (mns) 315,315,316
315 rz(ii,jj)=rz(ii,jj)+xla(ii,kk)*a(jj,kk-jj+l)*(corri*dt)**2

go to 311
316 rz(ii,jj)=rz(ii,jj)+xla(ii,kk)*a(kk,ins)*(corri*dt)**2
311 continue

310 continue

csecond: K b Z(J-1)T A2(j-1)(T) and K b Z(j-2)T A3(T)I
call range (ii,numeq,nband,ng,inbd)
do 450 jjl,numeq
xla(jj ,ii)=0.
if (a4(ii,ii).eq.1.0.or.a4(jj,jj).eq.l.) go to 450

do 451 kkmg,inbd13
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xla(jj ,ii)-xla(jj ii)+a4(ii,kk&-)*rx(jj ,kk,2,np)
451 continue
450 continue

do 150 ii1l,numeq
call range (ii,numeq,mband,mg,mbd)
do 150 jj=1,numeq
z12(jj ,ii,2)0O.
if (a3(ii,ii).eq.1.0.or.a3(jj,jj).eq.l.) go to 150
do 151 kkmg,mbd
z12(jj ,ii,2)=z12(jj ,ii,2)+a3(ii,kk)*rx(jj ,kk, 1,rp)

151 continue
150 continue

c third: sum of above
do 455 ii=l,numeq
do 455 jjl,numeq
xla(ii,jj)=xla(ii,jj)+z12(ii,jj ,2)-rz(ii,jj)

455 continue p

c fourth: sum * A1(-T)
do 460 ii1l,numeq
do 460 jj=1,numeq
rx(ii,jj ,3,np)0.-
if (al(jj,jj).eq.1.0.or.a1(ii,ii).eq.1.) go to 460
do 461 kk=1,numeq
rx(ii,jj,3,np)=rx(ii,jj ,3,np)+xla(ii,kk)*al(jj ,kk)

461 continue
460 continue
465 continue

c Sum of above
do 510 ii=1,numeq
do 510 jjl,numeq
z2(ii,jj ,2)0O.
rz(ii,jj)=0.
do 510 npl,nroot
z2(ii,jj ,2)=z2(ii,jj ,2)+rx(ii,jj ,3,np)*ck(np)

510 rz(ii,jj)=rz(ii,jj)+rx(ii,jj,2,np)*ck(np)
if (wstif.eq.0) return
write (6,1)

1 format ('z2(i,j,2) matrix, K xdp Z(j)')
do 4 ii=l,numeq

4 write (6,2) (z2(ii,jj,2),jj1l,numeq)

2 format (6el3.S)
write (6,3)I

3 format ('rz(i,j) matrix, K xdp Z(j-1)')
do 5 ii1l,numeq

5 write (6,2) (rz(ii,jj),jj~1,numeq)
return

end
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subroutine d4
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrit,nbeam,numem,nrnp,lmrel,bald,
1 nlnd,nlmem,neq..nq,numeq,nlC,nif,wstif,wrstif,wlod
common/random/ irandm,ncvdf,atacv,nl(10),n2(lO),ax(5O,5O,lO),
1 nt(50,50,10),loa,nroot,nsmax,corri
common/soil xdp(50,3),xld(50,2),x2dC5O,3)
common/dlod/ dt,nti,as(50,lO),d1C50,10),ndof(10),ldofl
common/sly! a(50,25) ,b(50)
common/matrix/ la(50) ,tl(50) ,t2(50) ,f(50)
common/rrl zz(50,50,3),z12(50,50,2),z2C50 ,SO,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,

50)

common/rr3/ al(50,50),a2(50,50),a3(50,50),xLa(50,50),La2(50,50)
common/eign/ eigvec(50,24),rho(24),a 4 (50,50)
double precision a,b,xdp,xld,x2d.tl ,t2, f,eigvec,rho,a4
double precision al ,a2,a3 ,xla,rz,rzl ,rzl2,z12,zz,rf,z2

c Evaluate K xdp xdpCT) K(T)
do 515 iil,numeq
t2(ii)=O.
call range (ii,numeq,mband,mg,mbd)
do 515 jj=mg,mbd
if (xdp(jj,2).eq.0.) go to 515
msjj-ii+l
if (mns) 516,516,517

516 t2(ii)-t2(ii)+a(jj,ii-jj+l)*xdp(jj,2)
go to 515

517 t2(ii)--t2(ii)+a(ii,ms)*xdp(jj,2)
515 continue

do 300 iil,numeq
do 300 jjl,numeq

300 xla(ii,jj)--t2(ii)*xdp(jj,2)
do 310 ii=l,numeq
call range (ii,numeq,nband,ng,inbd)
do 310 jj=l,numeq
rzl(ii,jj)=0.
if (a(ii,l).eq.1. .or.a(jj,l).eq.l.) go to 310
do 311 kking,inbd
sjj -kk+l

if (ms) 315,315,316
315 rzl(ii,jj)=rzl(ii,jj)+xla(ii,kk)*a(jj ,kk-jj+l)*(cori*dt*2)**2

go to 311
316 rzl(ii,jj)=rzl(ii,jj )+xla(ii,kk)*a(kk,is)*(corri*dt**2)Y.-2
311 continue
310 continue

if (wstif.eq.0) go to 333
write (6,13)

13 format C K XDP )MP(T) K(T):'
do 303 ii=l,nuineq

303 write (6,2) (rzl~ii,jj),Jj=l,numeq)
c Evaluate E[z(i)z(i-l)]
333 do 470 ii1l,numeq

call range (ii,numeq,inband,ing,mbd)
do 470 jjl,numeq
xla(ii,jj)0O.
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if (a4(ii,ii).eq.l.0.or.a4(jj,jj).eq.1.) go to 470
do 471 kkmg,mbd
xla(ii,jj)-xla(ii,jj)+a4(ii,kk)*zz(kk,jj, 1)

471 continue
470 continue

do SZO ii=1,numeq
call range (ii,numeq,mband,mg,mbd)
do 570 jjinl,numeq
zl2(ii,jj ,2)0O.
if (a3(ii,ii).eq.l.0.or.a3(jj,jj).eq.l.) go to 570
do 571 kk=mg,mbd
zl2(ii,jj ,2)=a3(ii,kk)*zl2(jj ,kk, 1)+z12(ii,jj ,2)

571 continue
570 continue

do 480 ii=l,numeq
do 480 jj=l,numeq

480 xla(ii,jj)=z12(ii,jj ,2)+xla(ii,jj)-z2(ii,jj ,l)*dt*,-2
do 482 ii=l,numeq .

do 482 jjl,numeq ,,p

z12(ii,jj ,2)0O.
if (al(ii,ii).eq.1.0.or.al(jj,jj).eq.1.) go to 482
do 483 kk-l,numeq
z12(ii,jj ,2)=zl2(ii,jj ,2)+al(ii,kk)*xla(kk,jj)

483 continue
482 continue

if (wstif.eq.0) go to 150
write (6,1)

1 format ('z12 (i,j) matrix')
do 22 iil,numeq '

22 write (6,2) (z12(ii,jj,2),jj=1,numeq)
2 format (6e13.6)

c Evaluate rzl2Ci,j) = A2 zl2(i,j,2) A3(T)
150 do 485 ii=1,numeq

call range (ii,numeq,mband,mg,mbd)
do 485 jj=l,numeq
xl a Cii, jj) =0.
if (a2(ii,ii).eq.l.0..or.a2(jj,jj).eq.1.) go to 485
do 486 kkmg,mbd
xla(ii,jj)=xla(ii,jj)+a2(ii,kk)*z12(kk,jj ,2)

486 continue
485 continue

do 490 iil,numeq
call range (ii,numeq,mband,mg,mbd)
do 490 jj=l,numeq
rzl2(jj ,ii)0O.
if (a3(ii,ii).eq.l.0.or.a3(jj,jj).eq.l.) go to 490
do 41kkmg,mbd
rzl2(jj,ii)=rzl2(jj,ii)+a3(ii,kk)*xla(jj,kk)

41continue %4

490 continue
if (wstif.eq.0) go to 152
write (6,5)

5 format C'rz12 (i,j) matrix')
do 6 iiinl,numeq
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6 write (6,2) (rzl2(ii,jj),jj=l,numeq)
c Evaluate K xdp(i,2) ZQj)T A2(T) and K xdp(i,2) Z(j-l)*T A3(T)

152 do 495 iial,numeq
call range (ii,nurneq,mband,mg,mbd)
do 495, jj~l,numeq
xla(jj ,ii)=O.
if Ca2Cii,ii).eq.l.0.or.a2ljj,jj).eq.l.) go to 495
do 496 kk-mg,mbd
xla(jj ,ii)-xla(jj ,ii)+a2(ii,kk)*zZ(jj ,kk,2)*dt**2

496 continue
495 continue

do 595 iil,numeq
call range (ii,numeq,mband,mg,mbd)
do 595 jjal,numeq
zl2(jj,ii,l)0O.
if. (a3(ii,ii).eq.l.0.or.a3(jj,jj).eq.l.) go to 595
do 596 kk--mg,mbd
zl2(jj,ii,l)=zl2(jj,ii,l)+a3(ii,kk)*rz(jj,kk)*dt**2

596 continue
595 continue

if (wstif.eq.0) return
write (6,9)

9 format (' K xdp ZQj) A2(t)')
do 10 iilI,numeq

10 write (6,2) (xla(ii,jj),jjl,numeq)
write (6,11)

11 format (' K xdp Z(j-l) A3(t)')
do 12 ii-l,numaq

12 write (6,2) (z12(ii,jj,l),jjl,numeq)
return
end
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MWUN IFITDERMr- 10 - - ;x

subroutine dS (iv)
integer wstif,wrstif,wlod
common/par/ method,kind,numnp ,nstrut ,nbeam ,numem ,nrnp ,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common/soil xdp(50,3),xld(50,2).,x2d(50,3)
common/dlod/ dt,nti,ns(50,l0),dl(50,10),ndof(l0),ndofl%
common/xmd/ xmass(50) ,damp(50,25)
common/matrix/ La(50) ,t1(50) ,t2(50) ,f(50)
common/rest/ res(50)
common/rr3/ al(50,50),a2(50,50),a3(50,50),xLa(50,50),La2(50,50)
double precision xdp,xld,x2d,xmass,damp,tl,t2,f,df
double precision al,a2,a3,xLa,res

c Find the forcing fn at i'th step 1

do 150 ii1l,numeq
c Pick out # DOF that has load

do 160 jjl,ndofl
if (ii.eq.ndof(jj)) go to 161

160 continue
f (ii)=0. I,

go to 150
c Pick out n'fth point that has amplitude change

161 Lcla~ii)
if (iv.eq.ns(ii,Lc)) go to 170
df=(dl(ii,Lc)-dl(ii,lc-l))/(ns(ii,lc)-ns(ii,lc-1))
f(ii)=dl(ii, lc-1)+df*(iv-ns(ii, ic-i))

go to 150
170 f(ii)-dl(ii,lc)

150 continue
c form effective load vector

do 200 ii=l,numeq
tl(ii)=0.
call range (ii,numeq,mband,rng,mbd)
do 200 jj-mg,mbd
if (xdp(jj)1).eq.0. .or.a3(ii,jj).eq.0.) go to 200
tl(ii)-t1(ii)+a3(ii,jj)*xdp(jj ,l)

200 continue
do 205 iil,numeq 

N

205 t2(ii)=2.*xmass(ii)*xdp(ii,2)
do 210 iil,numeq

210 xdp(ii,3)-t2(ii)+t1(ii)+(f(ii)-res(ii))*dt**2
call choles(iv)

c calculate velocity and acceleration
do 220 iil,numeq

xld(ii,1)=(xdp(ii,3)-xdp(ii, l))/(2.*dt)
220 continue

return
end
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subroutine d6 (iv,irandm)
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut,bea,ulem,lrnp,llrel ,mband,

1 nlnd,nlmem,neq,nq,niumeq,nl,flif ,wstif,wrstif,wlod
common/soil xdp(50,3),xld(50,2),x2dC50,3)
conmmon/dlod/ dt,nti,ns(50,lO),dl(50,0),ldof(10),ldofl
common/xmd/ xmass(50) ,dampC50,25)
common/rest/ res(50)
common/rr3/ al(50,50),a2(50,50),a3(50,50),xLaC5O,50),La2C5O,5O)
common/rn!/ zz(50,50,3),zl2(50,50,2),z2(50,50,2)
common/nod/ ,(25),y(25),z(25),ntype(25),ir(25,

6),ui(25,6 )

common/eign/ eigvec(50,24) ,rho(24) ,a4(50,50)
dimension resl(50,2)
double precision xdp,xld,x2d,xmass,damp,aaa,eigvec,rho,a

4

double precision al,a2,a3,xLa,dxdp,zz,z12,z2,res ,resl
c evaluate the restoring force

if (inandm.eq.2) go to 320
do 290 ii=l,numeq

290 res(ii)=0.
do 310 id=l,numem
call restor (id,iv,l)

310 continue
call rbound
return

c Move A2 to A4; where A A2Cj-l)
320 do 150 iil,numeq

do 150 jj=l,numeq
150 a4(ii,jj)=a2(ii,jj)

c evaluate the equivalent stifness matrix
do 330 itl,numnp
do 330 isl,nq
if (ir(it,is).eq.l) go to 330

aaa-xdp(i;k,3)
329 dxdpaaa/333.

if (dxdp.eq.0.) go to 380
do 340 nn--l,2
do 361 im=l,numeq

361 res(im)0O.
if (nn.eq.2) go to 341
xdp( ik, 3)=aaa+dxdp
go to 350

341 xdp(ik,3)=aaa-dxdp
350 do 360 id=l,numem

call restor (id,iv,nn)
360 continue

do 370 iil,numeq
370 resl(ii,nn)=res(ii).
340 continue

if (wstif.eq.0) go to 380
write (6,7) ik

7 format ('dof = ',i4,,' resl(ii,l), and resl(ii,2) are:')
do 465 JS=1,2

465 write (6,1) (resl(i4,j5),iV41,numeq)
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380 do 390 ii=1,numeq
if (dxdp.eq.0.) go to 395
a2(ii,ik)=(resl(ii, 1)-resl(ii,2))/(2.*dxdp)

go to 390 6

390 coninue=a(i~k
d9 on385iinue e

385 38 x id(2.,3)-(e2i1+es(12)
35xdp~i ,3)aaa li~l+ elii2) 2
330coninue=aa
d3 on430inue nme

430 430i)- (i,3)me
c3 riite xdw testffes ati

if wtdotestif fness goator40
do 415i~e.0 iiltou4eq

415 4rit (6,(2(ijjj=,umq
405 call (,1 bod()i~j)j~~nm

45call rbound~l
ifl (rscfoq.) o o 1
i wrt feq0 (6,2)41
doit 42(i6,n m

420 writ (6 , (a (imj) jleum
42 comput (61 a2(mtix~jjlnmq
41 dompt 00 miatnrie

do 400 jj=l,nuimeq

if (ii.ne.jj) go to 400
a2(ii,jj)=a2(ii,jj)+2.*xmass(ii)

400 continue
1 format (6e13.6)
2 format (/6x,'T{E EQUIVALENT STIFFNESS MATRIX IS:)

return
end

146



subroutine d7
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,urel ,mband,

nlnd,nlmem,neq,nq,numeq,nlc ,nif ,wstif ,wrstif,wlod
common/diod/ dt,nti,fls(50,l0),dl(50,l0),ndof(10),ndofl
cornon/rrl/ zzC50,50,3),z12(50,50,2),z2(50,S0,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzlZ(50,SO)
common/rr3/ al(50,50),a2C50,50),a3C50,50),xLa(50,50),La2(50,50)
double precision zz,zl2,z2,rf,rz,rzl,rzl2,al,a2,a3 ,xLa

c This subroutine evaluate E (Z(j+l) Z(j-l)
do 200 ii-l,numeq
call range (ii,numeq,mband,mg,mbd)
do 200 jj=l,numeq
xla~ii,jj)=0.
if (a2(ii,ii).eq.1.0.or.a2(jj,jj).eq.l.0) go to 200
do 210 kking,mbd
xla(ii,jj)=-xla(ii,jj)+a2(ii-,kk)*zl2(kk,jj ,2)

210 continue
200 continue

do 220 iil,numeq
call range (ii,numeq,mband,m,,mbd)
do 220 jjl,numeq
rz(ii,jj)0O.
if (a3(ii,ii).eq.1.0.or.a3(jj,jj).eq.1.o) go to 220
do 230 kk~mg,mbd
rz(ii,jj)=rz(ii,jj)+a3(ii,kk)*zz(kk,jj, 1)

230 continue
220 continue

do 240 iil,numeq
do 240 jjl,numeq

240 rz(ii,jj)=rz(ii,jj)+xla(ii,jj)-z2(ii,jj ,l)*dtj-*2
do 250 iil,numeq
call range (ii,numaq,mband,mg,mbd)
do 250 jjl,numeq
rf (ii ,jj)=0.
if (al(ii,ii).eq.l.0.or.al(jj,jj).eq.1.o) go to 250
do 260 kkmg,mbd
rf(ii,jj)=rf(ii,jj )+al(ii,kk)*rz(kk,jj)

260 continue
250 continue

return

end *
b,4
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subroutine damping
common/par/ method,kind,numnp ,nstrut,nbeam,numem,nrnp,nmrel ,mband,

nlnd,nlmem,neq,nq,numeq,nlc,nif ,wstif,wrstif,wlod
common/diLod/ dt,nti,ns(50,10),dl(50,10),ndof(10),ndofl
common/sly!' a(50,25),b(50)
common/xmd/ xmass(50) ,damp(50,25)
common/dya/ mass ,inlod ,alpha,beta ,mdi
double precision a,b,xmass,damp
do 100 jj=1,mband
do 100 ii=l,numeq
if (jj.eq.1) go to 101
damp(ii,jj)=beta*a(ii,jj)
go to 100

101 damp(ii,jj)=alpha*xmass(ii)+beta*a(ii,jj)
100 continue

return
end
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subroutine dicd
integer wstif,wrstif,wlod
common/par! method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif ,wrstif ,wlod
common/control/ ivelo, iacc
common/random/ irandm,ncvdf,ntacv,nl(10),n2&(10),ax(50,50,lO),

1 nt(50,50,10) ,loh,nroot,nsmax,corri
common/soil xdp(50,3),xid(5O,2),x2d(50,3)
common/dlod/ dt,nti,ns(50,10),dl(50,l0),ndof(10),ndofl
common/sly! a(50,25),b(50)
common/xmd/ xmass(50) ,damp(50,25)
common/chol/xmc(50 ,25)
common/matrix/ la(50),tl(50),t2(50),f(50)
common/kuz/ rx(50,50,3,8),ck(8)
common/rrl/ zz(50,50,3),zl2(50,50,2),zZ (50,50,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,50)
common/rr3/ al(50,50),a2(50,50),a3(50,50),xLa(50,50),La2(50,50)
common/eign/ eigvec(50,24) ,rho(24) ,a4(50,50)
common/cross! vv(50,S0),aa(50,SO),vz(50,50),az(50,50),av(50,50)
common/icross/ icros ,ivy, iaa, ivz,iaz, jay
common/f lagw/ inpt,ifpt,jpnp,intpt,iftpt,jpnt,iplot,meanw,iwvar
double precision a,b,xmass ,damp,xdp,xld,x2d,tl,t2,f,xmc
double precision al,a2,a3 ,xla,rz,rzl,rzl2,z12,zz,rf
double precision eigvec, rho ,a4,z2 ,ck, rx,vv,aa,vz,az, av

c This subroutine proceed the direct integration by using
c Central Difference method

open(unitlO0,file='plotout.mean.cd' ,status= new')
open~funit=ll,file='plotout.var.cd' ,status='new')
read (5,1) inpt,ifpt,jpnp,intpt,iftpt,jpnt,init,iplot,meanw,iwvar
write (6,6) inpt,ifpt,jpnp,intpt,iftpt,jpnt
write (6,7) init,iplot
write (6,B) meanw,iwvar
if (init.eq.0) go to 100
do 110 i1l,numeq
read (5,2) xdp(i,2),xld(i,2),x2d(i,2)

110 continue
go to 111

100 do 120 ii=l,numeq
xdp(ii,2)=O.
xld(ii,&2)=0.
x2d(ii,2)0O.

120 continue

c Evaluate the Initial displacement 1
111 do 140 ii~l,numeq

140 continue
c Evaluate [C]*.5/dt+tM],'dt**2

do 300 ii-l,numeq

do 300 jjl1,wband
if (jj.eq.l) go to 301

go to 300
301 xmc (ii, jj )=dam~p(i i, jj)*. 5/dt--6xmass (ii) /dt**1

300 continue14I
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write (6,12)
c find the highest eigenvalue

do 148 ii11,numeq
do 148 jj=1,mband

148 rzl(ii,jj)=a(ii,jj)
call higheig (nmc,numeq,mband)
write (6,14) rho(8),nmc
write (6,11) (eigvec(ii,8),ii-l,numeq)
nwr0O
go to (145,146) irandm

c Modal analysis
146 call bound (1,l.0E+15)

if (wstif.eq.0) go to 200
do 210 iil,numeq

210 write (6,11) (a(ii,jj),jj~1,mband)
200 if (nroot.gt.1) go to 340

call loweig (nmc,numeq,mband)
write (6,15) rho(l),nmc
write (6,11) (eigvec(ii,1),ii=1,numeq)
go to 147

340 call sspace (nroot,nsmax)
write (6,16)
write (6,11) (rho(ii),iil,nroot)
write (6,17)
do 342 iil,nrobt
write (6,11) (eigvec(jj,ii),jj1l,numeq)

342 continue
147 do 360 iil,numeq -7.

do 360 jjl1,mband
360 a(ii,jj)=rzl(ii,jj)

c evaluate A1,A2,A3
do 402 iil,numeqi
do 402 jjl1,mband
al(ii,jj+ii-1)=damp(ii,jj )*dt*.5

a3(ii,jj+ii-1)=al(ii,jj+ii-1)
a4(ii,jj+ii-1)=a2(ii,jjii-1)
if (jj.ne.1) go to 402

403 al(ii,jj+ii-1)=al(ii,jj+ii-1)+xwass(ii)

a3(ii,jj+ii-1)=a3(ii,jj+ii-l)-xmass(ii)
a4(ii,jj+ii-1)=a2(ii,jj+ii-1)

402 continue
c symmetric

do 404 ii1,numeq
do 404 jjii+,nmeq
al(jj,ii)=al(ii,jj)
a2(jj,ii)=a2(ii,jj)-
a3(jj,ii)=a3(ii,jj)
a4(jj ,ii)=a4(ii,jj)

404 continue
c A inverse

call matinv (numeq,wstif)
call sbound (4)
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145 do 130 iiul,numeq

130 continue
do 131 iiinl,nuuoq
do 131 jj-l,numoq

131 1&2(ii,jj)-l
c Start the iteration

do 1000 iml,nti
call dl (i)
go to (400,408), irandu

408 call d2 Mi
c Evaluate ck(np)

do 440 npl1,aroot
ck (np ) 0.
do 440 iiinl,numeq
if (xdp(ii,2).eq.0.) go to 440
ck(np)mck(np)+eigvec(ii,np)*xass(ii)*xdp(ii ,2)

440 continue
call d.3
call d4

c TOTAL SUM
do 500 iial,num~q
do 500 jjinii,nuaoq
rf(ii,jj)nrf(ii,jj)+rzl2(ii,jj)+rzlZ(jj,ii)
rf.(ii-,jj)arf(ii,jj)-xla(iijj)-xla(jj,ii)

500 continue
do 505 jjmI,nuaeq
do 505 iiinj j*,numeq
rf(ii,jj)nrf(jj ,ii)

505 continue
if (wstifeq.0) go to 515
write (6,9)

9 format C the total sum matrix')
do 525 iin1,numeq

525 write (6,11)(f(i,,Juaq
c Evaluate zz(iijj,3)

515 do 540 ii-l,numeq
do 540 jjml,nuueq

if (a1(ii,ii).eq 1.0 or al~ *q go to S."C
do 541 kkin1,num~q

541 conti.nue
54.0 continue

do 550 iiml,nuaeq
do 550 ilai,numwq

if Is * q or a. *q go
do 55S kkn:,nuneq

55: cot =uo
550 continue

do 555 ~~u~



do 555 iinjj,numeq
if (ii.eq.jj) go to 555
zz(i,j j,3)-zz(jj ,ii,3)

555 contLnue
if (icros.eq.0) go to 400
if (ivz.eq.l) call svz (i,nwr)
if (iaz.eq.l) call saz (i,nwr)
call d7
if (iav.eq.1) call say (i,nwr)
if (iaa.eq.l) call saa (i,nwr)
if (ivy eq.1) call svv (i,nwr)

c w.ite down the results
-00 :all write li,nwr)
MOC continue

I format (i0is)
Z format (3f10.5)
6 format (9(/).5x,' INITIAL # DOF FOR PRINT OUT [INPT] l',iS,

1 //,5x,' FINIAL # DOF FOR PRINT OUT [IPFTJ 01.59
2 ,,x,' INCREMENT OF DOF FOR PRINT OUT [JPNPJ =',iS,
3 ,/5x.' INITIAL TIME NUMBIER FOR PRINT OUT [INTPT] -' , 0,
4 5x, ' FINIAL TIME NUMBER FOR PRINT OUT (IFTPT] =',i5,
5 5x.' INCREMENT OF TIME FOR PRINT OUT [JPNT] - ',i5)

7 format 9(i),Sx,'INITIAL CONDITION [INIT] ',i5,
S /5x,' 0 GENERATE TO BE EQUAL ZERO'

2 '5x,': I READ FROM DATA CARD'
3 ,5x,' IPLOT ] - ,
-5x,' 0 DIRECTLY WRITE DOWN FOR PRINT OUT'
5 Sx,' 1 WRITE DOWN FOR PLOTTING MANNER')

8 format Sx.'FLAG FOR WRITING DOWN MEAN RESPONSE MEA.W ] -
i5, Sx, 0 0 ,,5x,'. 1 YES',

2 5x,'FLAG FOR W'ERTING DOWN VARIANCE RESPONSE [ IWVAR -',
3 :5, Sx, 0 NO',iSX,' I YES')
format 3e'3 5)

12 format ': ,Ox,' -HIS IS SOLUTION OF C D. METHOD')
. format 3x,'7HE HIGHEST FREQLNCY IS : ',e20.9,

3x%"BER IF :;ERATION OF FINDING HIGHEST FREQLUNCY IS :',i5,
2. ISi, T, CORRESPONDING EIGENVECTOR IS '

15 format ',3xTHE LOWEST FREQUENCY IS : ',e20.9,
1 3x'%UMBER OF "TERATION OF FINDING LOWEST FREQUENCY IS ;',i5,
Z 1lSx, TE CORRESPONDING E:GENVECTOR IS ')

.6 format 5x, 'THE E 5ENVALUES AR '

!ormat 5x, -HE E';E.N"rCTOR ARE
retu rn

end

'.,,
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subroutine dicdn
integer wstif,wrstif,wlod
common/engy/ strain(ll,ll,10,2),energd(10),dv(2)
common/par/ method, kind,numnp ,nstrut ,nbeam ,numem ,nrnp ,nrel ,mband,

alnd,nlmem,neq,nq,nuzmeq,lc,flif,'Jstif,wrstif,wlod
common/random/ irandm,ncvdf,ntacv,nl(10),fl2C10),ax(5O,50,lO),

1 nt(50,50,10) ,lon,nroot,nsmax,corri
common/sol/ xdp(50,3),xld(50,2),x2d(50,3)
coinon/dlod/ dt,nti,ns(50,l0),dl(50,10),ldof(10),ldofl
couimon/slv/ &(50,25),b(50)
coainon/xmd/ xmass(50),damp(50,25)
common/chol/xmc(50, 25)
comon/matrix/ la(50) ,tl(50) ,t2(50) ,f(50)
comn/kuz/ rxC5O,50,3,8),ck(8)
common/rrl/ zz(50,50,3),zl2(50,50,2),z2(5O,5O,

2)
common/-r2/ rfCSO,5O),rzC5O,50),rzl(5O,S0),rzl2(5O,5O)
comuon/rr3/ a1C50,50),a2C50,50),&3C50,50),xLa(50,50),La2C50,5O)
common/eign/ eigvec(50,24) ,rho(24) ,a4(50,50)
common/flagw/inpt,ifpt,pnp,intpt,iftpt,jpflt,iplot,ealw,iwvar
comnon/icross/ icros,ivv,isa,ivz,iaz,iav
double precision a,b,xmass ,damp,xdp,xld,x2d,tl,t2,f,X3c
double precision al ,a2,a3,xla,rz,rzl,rz12,zl2,zz,rf
double precision eigvee, rho,a4,z2 ,ckrx

c This subroutine proceed the direct integration by using
c Central Difference method

open~unitml0,filen'plotout.me1.Cd41' ,status' newt)
open~unitinll,filein'plotout.var.Cd.n' ,statusu'new')
read (5,l) inpt,ifpt,jpnp,intpt,iftpt,jpnt,init,iplot,Uealw,iwvar
write (6,6) inpt,ifpt,jpnp,intpt,iftpt,jpnt
write (6,7) init,iplot
write (6,8) meanw,iwvar
if (init.eq.0) go to 100
do 110 iinl,nuineq
read (5,2) xdp(i,2),xld~i,2),x2d(i,2)

110 conti.nue
go to 111

100 do 120 ii-l,numeq
xdp Cii ,2)inO.
xld~ii,2)inO.
x2d(ii,2)nO.

120 continue
c Evaluate the Initial displacement

111 do 140 iiinl,numeq
xdp(ii, l)inxdp(ii,2)-dt*xld(ii,2)+.5*x2d(ii,2)*dt**2

140 continue
c Evaluate [CI*.5Idt+[M]/dt**2

do 300 iil1,numeq
do 300 jjinl,mband
xmc~ii,jj)-damp(ii,jj)*dt/2.
if (jj.ne.1) go to 300
xic(ii,jj)-damp(ii,jj)*dt/2.+xmass(ii)

300 continue
write (6,12)

c Find the highest eigenvalue

153



do 148 ii=l,numeq
do 148 jj1l,mband

148 rzl~ii,jj)=a~ii,jj)
call higheig (nmc,numeq,mband)
write (6,14) rho(8),nmc
write (6,11) (eigvec(ii,8),ii=l,numeq)
nwr-Q
go to (145,146) irandm

c Modal analysis
146 call bound (l,l.0E+15)

if (wstif.eq.0) go to 210
do 220 iil1,numeq

220 write (6,11) (a(ii,jj),Jjjl,mband)
210 if (nroot.gtl1) go to 340

call loweig (nmc,numeq,mband)
write (6,15) rho(l),nmc
write (6,11) (eigvec(ii,1),ii=l,numeq)
go to 147

340 call sspace (nroot,nsmax)
write (6,16)
write (6,11) (rho(ii),ii=1,nroot)
write (6,17)
do 342 iil,nroot
write (6,11) (eigvec(jj,ii),Jjjl,numeq)

342 continue
147 do 360 iiml,numeq

do 360 jjinl,mband
360 a~ii,jj)=rzl(ii,jj)

C evaluate A1,A2,A3; The reason we evaluate the I

c A2 matrix is because that at time step (1) the stiffness
C matrix is equal to the primary stiffness We establish

145 do 402 iil1,numeq
do 402 jjl1,mband.
al~ii,jj+ii-l)=damp(ii,jj)*dt*.5

&3Cii,jj+ii-l)-al(ii,jj+ii-1)
a4(ii,jj+ii-1)=a2(ii,jj+ii-1)
if (jj.ne.1) go to 402

403 al(ii,jj+ii-1)-al(ii,jj+ii-l)+xmass(ii)

a3(ii,jj+ii-l)-a3(ii,jj+ii-l) -xass (ii)
a4(ii,jj+ii-l)-a2(ii,jj+ii-l)

402 continue
c symmetric

do 404 iiul,numeq
do 404 jjsii+l,numeq
al(jj ,ii)inal(ii,jj)
a2(jj,ii)ua2(ii,jj),
a3(jj,ii)ina3(ii,jj) i

a4(jj ,ii)sa4(ii,jj)
404 continue

if (irandm.eq.l) go to 149P

c A inverse

call matinv (numeq,wstif)I
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call sbound (4)
149 do 130 iiinl,numaq

La Cii)-1
130 continue

do 131 ii-l,numeq
do 131 jjinl,numeq

131 LaZ(ii,jj)ul
c Start the iteration

do 1000 iinl,nti
call d.S Ci)
go to (400,408), irandm

408 call d2 (i)
c Evaluate ck~np)

do 440 npinl,nroot
ck(np)0O.
do 440 iiinl,numaq
if (xdp~ii,2).eq.0.) go to 440
ck~np)mck(np)+eigvec~ii,np)*xmass Cii)*xdp(ii, 2)

440 continue
call d.3
call d4

c TOTAL SUM
do 500 iiinl,numeq
do 500 jjinii,nuaeq
rf~ii,jj)-rfii,jj)+rzl2Cii,jj)+rzl2(jj ,ii)

rf(ii,jj)rf~ii,jj)-z12(ii,jj ,l)-zl2Cjj ,ii,l)+rzl~ii,jj)
500 continue

do 505 jjinl,nuueq
do 505 iimjj+l,nuueq
rf~ii,jj)inrf(jj ,Li)

505 continue
if Cwstif.eq.0) go to 515
write (6,9)

9 format (C the total sum matrix')
do 525 iil1,numeq

525 write (6,11) Crf(ii,jj),jj-l~numaq)
c Evaluate zz~ii,jj,3)

515 do 540 iiml,numeq
do 540 jjul,numaq
xla(ii,jj)u0.
if (al~ii,ii).eq.1.0.or.al(jj,jj).eq.1.) go to 540
do 541 kk-l,numaq
xla~ii,jj )ixla(ii,jj )+al(ii,kk)*rf(kk,jj)

541 continue
540 continue

do 550 ii*1,numeq
do 550 jjuii,numeq
zz~ii,jj ,3)u0.
if (al(jj,jj).eq.1.0.or.al(ii.i).eq.1.) go to 550
do 551 kkal,numeq
zz~ii~jj ,3)-zz(ii,jj,3).xla(ii.,kk)*al(jj ,kk)

551 continue
550 continue
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do 555 jjinlnumeq
do 555 iiajj,numeq
if (ii.eq.jj) go to 555
zz(ii,j j,3)zz(jj,ii,3)

555 continue
if (icros.eq.0) go to 400
if (ivz.eq.l) call svz (i,nwr)
if (iaz.eq.l) call saz (i,nwr)
call d7
if (iav.eq.l) call sav (i,nwr)
if (ivv.eq.l) call svv (i,nwr)
-f (iaa.eq.l) call sea (i,nwr)

400 call d6(i,irandm)
c write down the results

call write (i,nwr)
1000 continue

1 format (10iS)
2 format (3f10.5)
6 format (9(/),5x,' INITIAL # DOF FOR PRINT OUT [INPT] -',i5,
1 ///5x,' FINIAL # DOF FOR PRINT OUT (IFPT] - ',i5,
2 ///5x,' INCREMENT OF DOF FOR PRINT OUT [JPNP] -',i5,
3 ///5x,' INITIAL TIME NUMBER FOR PRINT OUT (INTPT] -',i5,
4 ///5x,' FINIAL TIME NUMBER FOR PRINT OUT (IFTPT] -',j5,
5 ///5x,' INCREMENT OF TIME FOR PRINT OUT [-PNT] - ',i.5)
7 format (9(/),5x,'INITIAL CONDITION [INIT] - ',0
1 /5x,': 0 GENERATE TO BE EQUAL ZERO'
2 /5x,': I READ FROM DATA CARD'
3 ///Sx,'[ IPLOT I -',15,
4 /5x,': 0 DIRECTLY WRITE DOWN FOR PRINT OUT'
5 /Sx,': 1 WRITE DOWN FOR PLOTTING MANNER')
8 format (///5x,'FLAG FOR WRITING DOWN MEAN RESPONSE [ ME' ] -'
1 i5,/Sx,': 0 NO',/5x,': 1 YES',
2 ///5x,'FLAG FOR WRITING DOWN VARIANCE RESPONSE [ IWVAR ] -',
3 iL,/Sx,': 0 NO',/SX,': 1 YES')

11 format (6e13.5)
12 format (10(/),10x,' THIS IS SOLUTION OF C.D. METHOD')
14 format (///3x,'THE HIGHEST FREQUENCY IS : ',e20.9,

1//3x'NUMBER OF ITERATION OF FINDING HIGHEST FREQUENCY IS :',0S,
2//15x,'THE CORRESPONDING EIGENVECTOR IS.:')

15 format (///3x,'THE LOWEST FREQUENCY IS : ',e20,9,
1//3x'NUMtBER OF ITERATION OF FINIING LOWEST FREQUENCY IS ',iS,

2//15x,'THH CORRESPONDING EIGENVECTOR IS :'
16 format (//Sx,'THE EIGENVALUES ARE ')
17 format (//Sx,'THE EIGENVECTOR ARE '/)

return
end
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subroutine dinm
common/par/ method,kind,numnp,nstrut,nbeam,numm,nrnp,zrel,mband,

1 nind ,nlmem,neq ,nq,numeq,nlc,nif,wstif ,wrstif,wlod
common/soil xdp(50,3),xld(50,2),x2d(50,3)
common/diod/ dt,nti,ns(50,10),d1(50,1O),ndof(lO),ndof1
coazmon/slv/ aCSO,25),b(S0)
coinmon/xmd/ xmass(50) ,damp(50,25)
common/matrix/ la(50),tl(50),tZ(5O),f(50)
double precision a,b,xinass,daip,xdp,xld,x2d,tl,t2,f
double precision axl,ax2,arrl,arror

c This subroutine proceeed direct integration using New-Mark mothod
C inipt: initial #do of print outy
C ifpt: final lOdof of print out
C jpnp: jump increment for #&,3f of print out
C intpt: intial time for number for print
c jpnt: jump increment for time print out
C fiftpt: final tmaime number for print
c init: initial condition 0: generate zero
c 1: read from data card

read (5,1) inpt,ifpt,jpnp~intpt,iftpt,jpnt,init,iplot
write (6,6) inpt,ifpt,jpnp,intpt,iftpt,jpnt
write (6,7) init,iplot
if (init.eq.0) go to 100
do 110 iinl,numeq
read (5,2) xdp(i,1),xld(i,1),%2d(i,l)

110 continue
go to 111

100 do 120 iiinl,numeq
xdp(ii,l)nO.
xld~ii, 1)-O.
xd(ii, 1)iO.

120 continue
open (unitinlo,filein'poutout.fda.nm' ,statusu'new')

III do 130 ii-l,numeq
la(ii)ml

130 continue
write (6,9)

9 format (10C/),36x,'THIS IS THE SOLUTION FOR N.M. METHOD')
do 1000 i-2,nti

c Find the forcing fn at i'th stop
do 150 iinl,nuseq

Q Pick out 0 DOF that has load
do 160 jjinl,ndofl
if (ii.eq.ndof(jj)) go to 161

160 continue
f ( £ ) o.
go to 150

c Pick out n'th point that has amplitude change

if (i-eq-ns(ii,1c)) go to 170 4

df-(dl~ii,ic-)-dl(ii~lc-1))/(ns(ii.1c)-ns(ii,lc-1))

gO to 150
170 f(ii)mdl(ii,lc)

Is-



la(ii)1la(ii)+l
150 continue
C M inverset *F

do 190 ii-lnumeq
f (ii)zf (ii) /=ass (ii)

190 continue
c start the iteration

i.f (i.eq.2) go to 132
do 131 iiinl,numeq
xZd(ii,2)mx~d(ii, 1)

131 continue
go to 999

132 do 133 iiinl,numeq
x~d(ii,2)-l.

133 continue
999 do 140 iiinlnumeq

xtinx2d(ii, 1)+x2d(ii,2)
xdp(ii,2)inxdp~ii, 1)+dt*xld(ii, 1)+. 25*xt*dt**2
xld~ii,2)mxld~ii, 1)+.5*xt*dt

140 continue
c K*xdp

do 209 iil1,numeq
t2(ii)i0.'

209 tl(ii)inO.
do 200 iiul,nueq
mbd-mband+ii- 1
if (mbd. gt numeq) mbdinnumeq
*g-ii-mband+1
if (mg-le.0) mgmi
do 200 ii. mg,mbd
ms-ij-ii+1
if (us) 201,201,202

201 tl(ii)it1ii)+a(ijii-ij+l)*xdp~ij,2)

go to 200
202 tl~ii)itl(ii)+a~ii,ms)*xdp(ij,2)

t2Cii)int2(ii)4damp(ii,.s)*xld(ij ,2)
200 continue

do 300 iiul,nuueq
tl(ii)intlcii)/XRass(ii)
t2(ii)int2(ii)/xmass(ii)

300 continue
do 320 iiul,numeq

320 continue
do 330 iu,nuueq

axl.dabs(x2d(ii,2))

if (axl.eq.ax2) go to 330
if (&xle*q.0.0.and.ax2.ne.0.0) go to 340
if (&x2.*q.0.0.and.axl.ne.0O) So to 340
err 1*axl/ax2
error-dabs(errl-l.)
if (error.gt.O.00S) go to 340
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330 continue
go to 998

340 do 350 ii=l,numeq
x2d(ii,2)--x2d(ii,3)

350 continue
go to. 999

998 if (i.gt.iftpt) go to 995
if (i.eq.intpt) go to 997
nwrunwr+l
if (nwr.eq.jpnt) go to 997
go to 995

997 if (iplot.ne.0) go to 955
write (6,3) i
write (6,4)
do 996 iiuinpt,ifpt,jpnp
write (6,5) ii, xdp(ii,2),xld(ii,2),x2d(ii,2),f(ii)

996 continue
go to 954

955 do 956 ii-inpt,ifpt,jpnp
write (10,8) ixdp(ii,2),xld(ii,2),x2d(ii,2),f(ii)

956 continue
954 nwr-O
995 do 994 ii=l,numeq

xdp(ii, l)-xdp(ii,2)
xld(ii, l)xld(ii,2)
x2d(ii, l)=x2d(ii,2)

994 continue
1000 continue

1 format (8i5)
2 format (3f10.5)
3 format (///20x,' NUMBER OF TIME STEP',3x,i5)
4 format (//'# DOF ',Zx,' DISPLACEMENT ',6x,' VELOCITY',7x,
1 ' ACCELERATION',7x,' FORCING FUNCTION')

5 format (i5,4x,e15.8,4x,e15.8,4x,e15.8,4x,e15.8)
6 format (9(/),20x,'INITIAL # DOF FOR PRINT OUT [INPT]',
1 5x,i5/20x,' FINIAL # DOF FOR PRINT OUT (IFPT]',5x,iS,
2 /20x,' INCREMENT OF DOF FOR PRINT OUT [JPNP]',Sx,iS,
3 /20x,' INITIAL TIME NUMBER FOR PRINT OUT (INTPT]',SX,i5,
4 /20x,' FINIAL TIME NUMBER FOR PRINT OUT [IFTPT]',5x,i5,
5 /20x,' INCREMENT OF TIME FOR PRINT OUT [JPNT]',5x,i5)
7 format (9(/),20x,' INITIAL CONDITION ',15x,i5,
1 /20x,' - 0 GENERATE TO BE EQUAL ZERO'
2 /20x,' - 1 READ FROM DATA CARD'
3 /20x,' IPLOT - ',i5
4 /20x,' - 0 DIRECTLY WRITE DOWN FOR PRINT OUT'
5 /20x,' = 1 WRITE DOWN FOR PLOTTING MANNER')

8 format(i4,2x,e15.8,2x,e15.8,2x,e15.8,2x,el5.8)
return
end
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subroutine did (ild,w,yp,xzp,sp)
common /stif/ s(12,12),r(3,3),t(12,12),st(12,12),tf(12),p(12)
double precision s,r,t,st,tf
go to (5,10,15,20), ild

c fixed - fixed ends
5 p~l)O0.5*w*yp

P()05*w*xzp
p(6)aw*sp*xzp/12.
p(7)=p(l)
p(8)=p(2)
pC12)=-pC6)
p(12)=-p(6)
go to 25

c hinge - hinge ends
10 p(1)-O.S*U,*yp

p(2)O0.5*w*xzp
p(7 )=p(l)
p(B)=p(2)
go to 25

c hinge left end
15 p(l)0O.S*w*yp

p(2)-0.375*w*xzp
p(7)-p(l)

p()062S*w*xzp
PC 12)=-0. 12S*w*sp*xzp
go to 25

c hinge right end
*20 p(1)=0.5*w*yp

p(2)O .625*w*xzp
p( 6 )-0. 12S*w*sp*xzp
p(7)-p(l)
p( 8 )mO. 375*w*xzp-,

25 continue
return

end

160
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subroutine dload
common/dlod/ dt,nti,ns(50,10),dl(50,10),ndof(10),ndofl
common/random/ irandm,ncvdf,ntacv,nl(10),n2(10),ax(50,50,10),
1 nt(50,50,i0),lon,nroot,nsmax,corri
common/icross/ icros, ivv,iaa, ivz,iaz,iav

c this subroutine read dynamic load
c irandm: indicate random analysis
c I: yes; 2: No
c ndofl : total number dof that have load acting
c dt : time increment
c nti : number of time increment
c ndof(20) : #th dof that has load acting
c dl(ndo,j): dynamic load amplitude
c ns(200,j) : ns 'th point that has changing amplitude
c ntpdl : amount number of point of ns(i,j) [for one time function] -,

c ncvdf: Total # of pairs in covariance matrix for forcing fn
c LOn : linear of nonlinear analysis
c 1 : Linear analysis; 2: Nonlinear analysis
c nl(i) & n2(i) : pair # in covariance forcing fn for input
c ntacv: total # of amplitude change in time hystery for Nl,N2 pair
c nt(nl(i),n2((i),j), and ax(nl(i),n2(i),j) are the pair for time
c and corresponding amplitude change point
c

read (5,1) irandm,lon,ndofl,nti,dt
write (6,10) irandm,lon,ndofl,nti,dt
do 100 i=l,ndofl
read (5,2) ndof(i),ntpdl
ndo-ndof(i)
read (5,3) (ns(ndo,j),dl(ndo,j), Jil,ntpdl)
write (6,11) ndo,(ns(ndo,j),dl(ndo,j), j1l,ntpdl)

100 continue
if (irandm.eq.l) return

c Read variance matrix for input forcing fn
read (5,13) icros,ivv,iaa,ivz,iaz,iav
write (6,14) icros,ivv,iaa,ivz,iaz,iav

20 read (5,4) ncvdf,nroot,nsmax,corri
write (6,5) ncvdf,nroot,nsmax,corri
do 200 iml,ncvdf
read (5,6) nl(i),n2(i),ntacv
write (6,7) nl(i),n2(i),ntacv
nxl-nl(i)
nx2rn2 (i)
read (5,9) (nt(nxl,nx2,j),ax(nxl,nx2,j),jil,ntacv)
write (6,8) (nt(nxl,nx2,j),ax(nxl,nx2,j),jml,ntacv)

Z00 continue
1 format (4i5,flO.5)
2 format (2i5)
3 format (5(i5,fl0.5))
4 format (3i5,fi0.7)
5 format (//Ix,'TOTAL # IN COVARIANCE MATRIX FOR FORCING FLNC7ION '

1'[ NCVDF ] - ',iS///lx,'NUMBER OF EIGE.NVECTORS REQUIRE IN REPRESEN
2TING THE MEAN RESPONSE ( NROOT ] -',i2///ix,'NL'MBER OF SWEEPING ',

3'REQUIRE IN SUBSPACE ITERATION NSMAX I - ',5/,'/Ix,
4'FRACTION OF STANDARD DEVIATION OF STIFFNESS [ CORRI ] ' ,flO.5)
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6 format((ii5i)
7 format(2(/),lx,' PAIR [12I,2,] ','TO0TAL POINTS OF
1'CHAINGING AMPLITUDE [ NTACV I=',:5)

9 format (5(iS,flO.4))
8 format (' TIME INCREMEN7. ',2x,i5,2x,' AM',PLI=JDE 'e!3.6)

10 format (10(/),5x,'FLAG INDICATING RANDOM ANALYSIS I:AN =l

1 iS,/Sx,' :1 NO',/5x,' :2 YE.S'///5x,' LINEAR OR NONLINEAR',
2 ' ANALYSIS [LON] - ',iS,/Sx,':1 LI.NEAR''x,':2 NCNLINtAR',
3 //,/5x,,'TOTAL # DOF 7HAT HAVE LOAD [\DOFL I=,5
4 ///5x,'TOTA.L TIXE INCREMENT NTI ] ,5
5 //'/5x, 'TIME INCR.EMENT [ OT F ,10.5)

11 format 15(/),5x,i45,' DOF INPIL'T LOADING F*,N-ON EC.
1 ; xtime increment' IZx,-45,5x,' amp!>,tude',3x,e::.5)'

12 format ,',///!,5x, 'FLAG INDICATING COMPUTNG MEAN SQUARE VELOCT7y
1 i5x,'0 : NO','5x,'1 YES',
2 /,///5x,jFLAG IND:CATING COMPL7TNG MIEAN SQUARE ACCELERA70s" '

3 i5,'5x.'0 : NO','Sx,'l YES')
13 format (6i5)
1- format (////Sx'F-LAG INIAECTP7~ CROSS IOM ENT :ZCS

1 I5/5X,'0 NO',"SX,'l YES', *,' IVV
2 15/SX,'0 NO',/5X,' YEtS',, 5\,'r :AA
3 I5SX,'0 NO'.'5X, ' YES'. ,X :v:

4 5,SX,'0 NO'',1. YES',' 5X, '' :AZ
5 15/'SX,'0 N0'/5X,'1 -ES'_,5X,'r :.A%*
6 15,'5X,'0 NO','SX,'' YES')
ret urn
end

.rl
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subroutine eigan
common /modal/sk('16,16),sm(16,16),qk(16,16),xLam(16,2)
dimension be-.a(2),phi(2)
double precisi.on sk, sz,qk,x.Lam ,beta,phi 7
real judge

c-sk(1, 1)*sk(2 ,2)-sk(1,2)*'sk(1,2)
judgeinb*b-4.**
if (judge.&*.O.) go to 500
write (6,1)
stop

50 uge-judge**.5
if ,.ne.0.) go to 110

write (6,S)
stop

'13 -,u(,(b udge)/'(2.*a)

do 100 i-1,2
denon-sk(2,2,).xLam(i,1)*sm(2,2)
if (deno ne.3 ) go to 120
write 6,9)
stop

1ZO beta x)-,xLm(i, )*s,(1,2)-sk(1,2))/deno
!DO phi;),sm~l,1J4 2.*sm(1,2)*beta(i) 1 sm(2,2)*beta(i)*beta(i))**-

qk,.2,Z)-phif Z )*beta(Z)
Ifor mat -5x,'B**2 - 4 A C < 0 IN SUBROUTINE EIGEN, STOP W!)

8 format 5x,'A :S ZERO IN SUBROUTINE EIGEN, ERROR, STOP!!)
format ,,,x,*DENCS ZERO IN SUBROUTINE EIGEN, ERROR, STOP!!)
ret u r-
end
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program fda.
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut ,nbeam,numem,nrnp,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common/sly! a(50,25),b(50)
common/xmd/ xmass(S0) ,damp(50,25)
common/dya/ ms,inlod,alpha,beta,mdi
common/lod/ fi(50,12),ax,ay,az
common/dlod/ dt,nti,ns(50,10),dl(50,10),ndof(10),ndofl
common/random/ irandm,ncvdf,ntacv,nl(10),n2(l0),axx(50,50,10),
1 nt(50,50,10),lon,nroot,nsmax,corri
common/rest/res (50)
double precision a,b,fi,xmass,damp,res

c read and write structure data "

call input
a write band width

write(6, 1060) mband
1060 format(10(/),13h Band Width =,i5,//)
c initialize stiffness matrix (a)

numeq--numnp*nq
do 5 i=1,numeq
do 5 j1,mband
a Ci, j )=0 0

5 continue
c generate stiffness matrix (a)

call stiff
c write stiffness matrix (A), and mass matrix

if (wstif.eq.0) go to 101
write (6 ,1005)

1005 format(46x,35h The Structure Stiffness Matrix (A)/)
do 10 i=l,numeq

10 write(6,l010) i,(a(i,j),j=l,mband)
1010 format(/iS,6el9.7/(5x,6el9.7))

c Form Damping Matrix p.
101 go to (11,102), method
102 call damping

C Add concentrated mass
if (mass.eq.0) go to 500
do 510 iil,numeq

510 xmass (ii)zxmass (ii)+res (ii)
,,O ontinue

.f (wstif.eq.0) go to 11
4rite c 6,1004) I
4srmat '10(/),46x,'The Structure Mass Matrix')

in1.,numeq

* ,46x, The Structure DAMPING Matrix')

idamp(;.,j).j1l,mband) i
: :di:.ons --o stiffness matrix (a) and mass matrix0

-- *'t %if.4ness mnatrix (a)

%6



102, format"lO' ;,2*.x,.n-. hee 3"-..r . .nesm 'etr-x A

do 20 il.numeq
20 write( , S'o:: , a -, -. . rand

o to ':2,23 ,Met.o%
23 write(6,1006)

.006 foruat!(0( ,,2.x,'"he Reduced lass latrix CSS

do 27 iu.nuaeq
27 write(6. C::) i.xn ss,i)

write (6,200)

200 format 0(,' ,l,. The Reduced *anping latrix aAtP
do 31 i=:,nuaeq

31 write i, laip-i,: _-:,mband

ZZ go to 12,90- metnod
c :educe system stiftness matrix a

12 -all solver'>
do 1050 ;k-!ln:c

c. in:tialize load vector 'b

do -5 1-l,numK

45 continue
c read structure loads

read (5,140) nInd,nlm ,ax.,ayaz
./*C format '2Z.L,3el' 4)

call load
c write reduced load vector 'b)

1f (wiod.eq 0) Soto 13

write(6,1015)

1015 format( 47x,27hThe Reduced Load Vector 'B,

do 15 iml,numnp
n-nq*i. (nq-l&)

nn-nq* i

write (6,1025) i,(b(k),k-n,nn)

15 continue
c compute nodal displacements

13 call solver(2)
c write nodal displacements

write(6,1035)
1035 format (10(/),37x,44hS T R U C T U R E D A' P L A C E 4 E N 7 S'

1/)
write(6,1070)

1070 format(2x,4hNode,6x,6hU (in),13x,6hV (in),I3x,6hW 'n),:3x,
1 12hThetax (rad),7x,12hThetay (rad),7x,l2hThetaz irad)i)
do 30 i1l,numnp
nf=nq*i- (nq-1)
nn--nq*

write (6,1025) i,(b(k),kwn,nn)

30 continue
c compute and write member forces

call force
1050 continue

1025 format (i5,6e19.7)

go to (91,90),method

90 call dload
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to to (699,696) ,sdi
696 go to (691,692) ,lon
691 call dLc4

go to 697
692 call dicdn

go to 697
699 "all dins
697 continue

91 write (6,1036)
1036 foruat (//,10x,'* * * END OF O'TP rS * * *'10(/))

92 stop
end

t
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subroutine force
common/par/ method,kind,nunp,strut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,rlumeq,nlc,nif,wstif,wrstif,wlod

couimon/slv/ a(50,25),b(S0)
common /nod/ xC25),y(25),zC25),ntypeC25),ir(25,6),ui(25,6)
common/mem/ mtype(50),nd(50,2),mid(50),mlc(50),alfa(50),
1 mrel(50,2) ,thetai(50) ,thetaj (50)
common/mlib/ xa(25),z4C25),yiCZ5),xj(25),avy(25),
1 avzC25),mcurv(25)
common /lod/ fiC50,12),axay,az
common /stiff s(12,12),r(3,3),tC12,12),st(12,12),tf(12),p(.2)
dimension u(12),f(12),ndf(12)
double precision a,b,s ,r,t,st,tf ,u, f,fi
mprint-0
do 5 id=1,numem

c compute control counters
i-nd Cid, 1)
Jund Cid ,2)
m-mtype Cid)
do 2 k1l,nq
kk-k+nq
ndf(k)=nq*i- Cnq-k)
ndf(kk)a-nq*j-(nq-k)

2 continue
do 10 iil,neq
ilnndf (ii)
u (ii) =b Cii)

10 continue
c compute member forces for structure axes

go to (11,12,11,16), kind
11 call strut (id,i,j)

go to 14
12 if (mcurv(m).ne.0) call curvbm (id,i,j)

if (mcurv(m).ne.0) go to 14
call beam2 (id,i,j)
go to 14

16 call beam (id,i,j)
14 do 15 iiml,neq

f~ii)=0.0
do 15 jjml,neq
f~ii)-f~ii)+s(ii,jj )*ucjj)

15 continue
do 20 iial,neq
p(ii)nf~ii)+fi~id, ii)

20 continue
c transform forces to member axes

call rotate C3,id)
c write member forces

if Cmprint.ne.0) go to 25
mpr2nt=54
wite(6, 1030)

1030 format (10(/),47x,25hM E M B E R F 0 R C E S//)
write(6 ,2000)

2000 format(7h member,3x,4hnode,5x,8hforce(x) ,9x,8hforce(y) ,9x,I
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18hforce(z) ,9x,9hmotnent(x) ,Bx,9hmoment(y) ,8x,9hmoment(z)/)
25 mprintinmprint-1

nf-nif/ 2
write (6,1005) id,i,(tf~lk),lk1l,nf)

1005 format(/i5,3x,i5,6el7.7)
afl-nf+1
write (6,1006) j, (tf(lk) ,lkmnfl,nif)

1006 format(8x,i.5,6e17.7/)
5 continue

return
end
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subroutine gauss Cisolve,nord)
common/par/ metkod,kind,nuunp,nstrut,nbeau,nuuea~nrnp,nal ,.band,

1 ~nlnd,nlmeu,neq,nq,nuueq,nlc ,nif,wstif ,hrstif ,wlod
coinon/rr3/ al(50,50),a2(50,50),a3(S0,50),xLa(50,50),L.2(50,50)
comon/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzlZ(50,50)
double precision r, rz, rzl ,rzlZ ,al, .2,.3 ,xLa
go to (800,850), isolv*

800 do 500 iu1,numc.q
do 500 Jinl,numeq
if (i.gt.j) go to 515
if((i-1).Le.0) go to 510
&2 (i ,j ) al Ci ,j)
do 505 ku1,i-1

505 a2Ci,j)ua2Ci,j)-a3(i,k)*a2(k,J)
So to 520

510 a2(i,j)-al(i,j)
So to 520

515 a3Ci,j)-a2(j,i)/a2(j,j)
gO to 500

520 if (i.ne.j) go to 500
a3 Ci, i)ml.

500 continue
go to 888

C foward substitution
850 do 900 nnl,zord

do 600 iul,numeq
if (i.eq.1) go to 605
x.La(i,nn)inrzl2Ci,nn)
do 610 jinl,i-1

610 xLa(i,nn)ixLa(i,nn)-a3(i,j)*xLa(j,an)
go to 600

605 xLa(1,nn)inrz12(1,nn)
600 continue
c backward substitution

do 620 iinl,numeq
it-numeq- i+1
if Cit.eq.numeq) go to 625
rzl2(it ,nn)inxLa(it,nn)
do 630 Jinit+1,nuineq

630 rzl2Cit,nn)urz12(it,nn)-a2(it,j)*rzl2(j,nn)
rz12(it,nn)inrz12(it,nn)/a2Cit,it)
go to 620

625 rzl2(numeq ,n)-xLa(numeq,n) /a2 (numeq ,numeq)
620 continue
900 continue
888 return

end
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subroutine higheig (nac ni~meq,mband)
coinson/rrZ/ rt(5O,50),rz(5O,50) ,rzl'50,S5j .rzlZ(50,50)
conmn/xad/ ,csasu(S0),daup(50,25
couion/eigi/ eigvec(S0.24),rho24.),&4(5O.50)
coinon/aatrix/ tL(S0),tIA5O),t2(50),f(50)
coinmon/slv/ &(50.25),b(50)
dioension xrho(2)
double precision rf.rz,rzlrzlZ~a.b,xaassdamp~tl,t2, t
double precision eigvec,rho,&4
rmcuO
toleal.O E-6

c transfer stiffness matrix
do 130 iml,nuoeq
do 150 jol~aband
t2(L)0l.

10rf(i,.i-1)urzl(i,j)
30do 133 1u1,nuweq

do 135 juI~nuo~q
if (i.*q J) go to 135
rf(j ,ijinrf( ij

135 continue
do 160 il*1nuseq
call range Ii,nuaeqmband~mg~mbd)
b( i)O
do 160 J-eg..bd

160 b(i£)wb(i£)+rf( ij )*tZ( j)
165 nuc, nc +1

do 170 i-I.numeq

do 180 ±u1,numeq
call range (i~nuueq,mband,mS,abd)
t 2 Ci )-O.
do 180 J-mg,mbd

180 t2( i)mtZ( ,)+rf( L~j)*tl(j)
xrholinQ.
xrho2inO.
do 185 iint,numeq
xrholmxrhol~tl(i)*t2(i)

185 xrho2inxrhoZ+tl(i)*b(i)
xrho(l1)-xrhol/xrho2
if (nac-eqi1) go to 200
if ((1.-ebs(xrho(2)/xrho(fl.)) Le-tole) go to 210

200 do 205 £ul,nuueq
205 b(i)-t2(i)/(xrhoZ2*.S)

xrhoC2)inxrho( I)
go to 165

210 call solver (1)
call solver (2)
do 220 iul,numeq

220 eigvec(i,8)inb(i)
rho(8)inxrho(l)

c Transfer the stiffness back
do 230 iinlnumeq
do 230 jinl,mband17

170*
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230 a(i,j)mral(i~j)
return
end
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subroutine input
comon/par/ method,kind,nuanp,nstrut,nbeau,numem,nrnp, nmrel,mband,

1 nlnd,nlain,neq,nq,numeq,nlc,nif~wstif ,wrstit ,wlod
coinon/dya/ mass, iniod,alpha,beta,ndi

Con/nod/ ,i(25) ,y(2S) ,z(25) ,ntype(25) ,ir(25,6) ,ui(25,6)
comon/meu/ .type(50),nd(SO,2),uid(SO),mlcCSO),alfa(50),
1 .rel(50,2),thetai(50),thetaj(50)
coinon/.lib/ xa(25),zi(2S),yi(25),xj(2S),avyCZS),
1 avz(25),.curv(25)
common /lod/ fi(SO,12),ax,ay,ax
coinon/.libZ/ tf(Z5),bf(Z5),t(23),bw(2S)
common/matl e(5) sigma(5) .epsiln(5) ,pr(5) ,g(5) ,rho(5)
coinon/ rest/ res (50)
dimaension title(20)
double precision fi,sl~dsqrt,xl ,xZ',yl ,y2,z1,z2,res

c read and write control parameters
read (5,990) title

990 f oruat (20&4)
write(6,995) title

995 forwat(15(/),43x,'Run Title: ',20a4/'/)
read (5,1000) method.kind~nuunp,nstrut,nbeamarnutype,numem,numat,

1 nrnp,ninrol,nlc
read (5,999) wstif,wrstif,wlod
go to (54,55,56,57), kind

54 nequ4
nqud
nifin2
go to 58

55 noq=6
nq-3
nifin6
go to 58

56 neq-6
nq-3
nitu2
go to 58

57 neqnl2
nqu6 '

nifinl2
58 continue

1000 fornat(lliS)
999 format (3i.5)

6 write(6,1005)
1005 format (43x,34hC 0 N T R 0 L P A R A M E T E R S//

write (6,1010) mthod,numnp,nstrut,nbeam
write (6,1009) numem,nmtype,numat,nrnp,rerl,nlc

1010 format(42x,'Type of problem ( method ]',i5/
1 42x,jul static analysis'/
2 42x,2in2 dynamic analysis'//
3 42x,32h.Number of Nodal Points =,i5//
4 42x,32hNumber of Two-force Members -,i5//
5 42x,32hNumber of Beam Members =,is//)

1009 format(42x,32hTotal Number of Members =,is//
1 42x,32hNumber of Members in Library =,i5//
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2 42x,32hNumber of Materials =.is//
3 42x,32hNumber of Boundary Constraints -,i5//
4 42x,32hNumber of Member Releases =,is//
5 42x,32hNumber of Loading Conditions -,£5)
write (6,1011) wstif,wrstif,wlod

1011 format (///36x,45hStiffness Matrix Print Flag (lmyes,Ono) ,
1 i5//36x,45hReduced Stiffness Matrix Matrix (liyes,Oino)-,i5//
2 36x,45hReduced Load Vector (layes,0-no)- ,15//)
go to ( 7,8) ,method

c read and write the flag of method of solving -

c problem for dynamic analysis
8 read (5,1129) mass,inlod,mdi

1129 format (35)
write (6,1131) massinlod

1131 format (10(/),36x,' MASS- ',15/
1 36x,' - 0 NO CONCENTRATED MASS WAS ADDED '/
2 36x,' > 0 ADD CONCENTRATED MASS FOR [ MASS ] TIMES'//
3 36x,' INLOD - ',15/
4 36x,' - 1 READ FROM DATA CARD '/
5 36x,' a 2 READ FROM FILE')
write (6,1192) mdi

1192 format (/36x,' MDI a ',i5,
1 /36x,' - 1 Newmark method ',

2 /36x,' a 2 Central Difference Method')
if (mass.eq.0) go to 150
do 155 in-1,mass

155 read(5,156) mndof, res (mndof)
156 format (4(i5,elO.5>)
150 continue

c read damping (alpha and beta) [C]a alpha(M] + beta(K]
read (5,1132) alpha,beta

1132 format (2fi0.5)
write (6,1133) alpha,beta

1133 format (10(/), 36x,' DAMPING MATRIX - ALPHA [M] + BETA [K] '/
1 36x,' ALPHA - ',f15.8/
2 36x,' BETA - ',f15.8)

c read and write of member property table
7 write (6,1036)
1036 format(10(/),25x,5lhT A B L E 0 F M E M B E R P R 0 P E R T

1I E S//)
write (6,1037)

1037 format(42x,18hMoments of Inertia,18x,2lhEffective Shear Areas//lx,
16hMember,lOx,8hX - Sect,7x,8hZ - Axis,7x,8hY - Axis,7x,8hX - Axis,
27x,8hY - Axis,7x,8hZ - Axis/2x,4hType,14x,4hArea,90x,'Half depth')
do 11 imil,nmtype
read(5,1038) tf(im),bf(im),tw(im),bw(im),xj(im),avy(im),

1 avz(im),mcurv(im)
11 continue

do 303 im-l,nmtype
xa(im)ibf(im)*tf(im)*2.+bw(im)*tw(im)*2.
zi (im)-b f(im)* (bw (im)+t f(ira) )*-3- (bf (ia) -tw (ira)) bw (im)**3
zi(im)fzi(im)*2./3.

303 yi(im)-i(tf(im)*bf(im)**3+bw(im)*tw(im)**3)/6.
do 12 imm,nmtype
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write (6,1039) im,xa~im),zi(im),yi(im),xj(im)
1,avy(im) ,avz(in) ,mcurv(im) ,bw(Lm)%

12 continue
1038 format (7e10.3,i2)
1039 format (iS,Sx,6fl5.3,5x,i3,f15.3)
c read and write of material constants

write(6, 1015)
1015 format (l0(/),42x,34hM A T E R I A L C 0 N S T A N T S//)

2 do 10 iminl,numat
read (5,1020) e(im),sigma(im),pr(im),rbo(im)

epsiln(irn)isigma(im)/e( im)
write (6,1024) im

1024 format (48x,'Properties for Material ',iZ)
write (6,1025)e(im) ,sigma(im) ,epsiln(im) ,pr~li.) g(in) ,rho(im)

10 continue
1020 format(4o10.2)
1025 format( 4"1xZlhYoungs Modulus -,e16.7/ '

1 42x,2lhYield stress -,e16.7/
2 4Zx,2lhYield strain s,e16.7 '
3 4"1x,21h~oissons Ratio =e67

4 42x,.'lhShear Modulus *,e16.7/
5 42x,21h.Mass Density in,e16.7/)

c read and write nodal point coordinates
do 15 n1,nu-mnp
read (5.1120) an,x(nn),y(nn),z(nn)

1120 format(i5,3e10.4)
if (n.gt.1) go to 14
write(6, 1030)

1030 format (1O(/),43x,32hJ 0 1 N T C 0 0 R D I N A T E S//)
write(6, 1031)

1031 format(35x.,hNode,11x,lhX,15x,lhY.15x,lhZ/
1 .8x,4h(in),12x,4h(in) ,12x,4hUin)/)

14 write(6,1035) nn,x(nn),y(nn),z(nn)
1035 format(33x,iS,lx,3fl6.4)

15 continue
c read and write of member descriptions

ahwin0
do 20 iial,numem
read (5,4040) id,(nd('d,k),k-1,2),mtype(id),mid(id),Mlc(id),
1 afa(id),thetai(id),thetaj(id)

1040 formnat (6153flO.-4)

iinnd(id, 1)2

x2mx(j)
yliny(i)
y2iny(j)
zl=z( i)
z2inz(j)
sl1dsqrt( (x2 -x1) 2+ (y2 -y 1) 2(z2 -z 1) *''2)
mt-mtype (id)
if (ii.gt.l) go to 22

write (6,1045)
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1045 foruat(10(/),41x,37h1 E M B E R D E S C R I P T 1 0 N S//)
write (6,1101)

1101 format(Zx,6hMember,3x,4hLeft,3x,5hRight,5x,6hLngth,7x,4hArea,8x,
lZhIx,9x,2hIy,9x,2hIz,8x,3hAvy,9x,3hAvz,4x,ShMt',3x,hLoadng,2x
26hNumber ,3x ,4hNode, 3x , 4bNode , x, lhL, 10x,4hL**2, 7x, 4hL**4, 7x,..h.L**4
3 ,7x,4h.L**4, 7x,4hL**2,6x,4b.L**2/)

22 write (6,1100) id, (nd(id,k) ,k-1,2) ,sl,xa(mt) ,xj (mt) ,yi(mt) ,zi(mt),
1 avy(mt),avz(mt),mid(id),mlc(id)

1100 format (lx,iS5,2i8,f13.2,6f11.2,i8,3x,i8)
c compute half band width uband

if(j-i) 35,40,45
40 write(6,1055) id

1055 format(42h Identical End Nodal Poi~nts for Miember no.4i4)
35 ji-nq*j-nq+l

ij inq*
go to 50

45 ij-q*i.nq+1
jji-nq*j

50 nbdiiabs(ji-ij)
if(nbd-hw) 20,20,25

25 ahwiiabs(ji-ij)
20 continue

mbandinnhw+ 1
*c read boundary restraint codes

do 34 nin,numnp
ntype (rn)MO
do 34 ju1,nq

34 ir(nn,J)u0
write (6,1135)

1135 format (10(/),45x, 'B 0 U N D A R Y C 0 N D I T I 0 N S' ,/,
I Zx,'Node',3x,'Init. , 3x,'Boundary',6x,'X Initial',6x,'Y Initia
21',6x.'Z Initial ,4x,'X Init. Rotat. Y Init. Rotat. Z' Init. Rotat.
3',/,' Number Disp. Constraint',7x,'(L)'42x,'(L)',12x,'(L)',13x,
4' (Dog)', l0x,' (Deg)' , lx,' (Deg)' ,/)

do 60 nbml,nrnp
read (5,1125) n,ntype(n),(ir(n,j),j-1,6) ,(ui(n,j),jul,6)
write(6, 1130) n,ntype(n) ,(ir(n,j) ,jl1,6) ,(ui(n,j) ,j1,6)

60 continue
112-5 format (i3,il,6i1,6f10.4)
1130 format (5x,i3,5x, il,2x,6i1 ,5x,6elS .6)

c read and write member relAeases
do 31 imi1nfumem
do 32' j-1,2

32 mrel(im,j)0O
31 continue

if (nmrel.eq.0) go to 36
write (6,1060)

1060 format (10(/),40x,39h1 E M B E R R E L E A S E C 0 D E S/)
do 33 mr=1,nmrel
read (5,1065) Lm,(mrel(im,j),j=1,2)
write(6,1070) iu, (mrel(im,j) ,j=1,2)

33 continue
1065 format (3/i,,l
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1070 format (S3xiS,5xil,2xil)
36 continue

53 return
and
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subroutine Jacobi (n,nsmax)
common/par/ method,kind,numnp,nstrur ,nbeam,numem,nrnp,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif, ifpr,wrstif,wlod
common/rr3/ al(50,30),a2(50,50),a3(50,50),d(50,50),La2(50,50)
comon/modal/ a(16,16),b(16,16),x(16,16),eigv(16,2)
double precision al ,a2 ,a3 ,d,a,b,x,eigv
ioutu'6
rtol-l.0 E-6

c initialize iegenvalue and eigenvector mtrices
do 10 i1l,n
if (a(i,i).gt.0. .and.b(i,i).gt.0.) go to 4
write (iout,2040)
stop

4 dfi,l)=a(i,i)/b(i,i)
10 eigv(i,l)=d(i,1)

do 30 i=l,n
do 20 j1l,n

20 x(i,j)=0.
30 x(i,i)=l.

if (n.eq.l) return
C, Initialize sweep counter and begin iteration

nsweep0 -

nr-n- 1
40 nsweep=nsweep+1

if (ifpr.eq.l) write (iout,2000) nsweep
c check if present off-diagonal element is large enough to
c reguire zeroing

aps=(. 01--nsweep)*'2
do 210 j1l,nr
jj=j+l
do 210 kjj,n
eptola=(a(j ,k)*a(j ,k))/(a(j ,j)*a(k,k))

if ((eptola.Lt.eps).and.(eptolb.Lt.eps)) go to 210
c if zeroing is required , calculate the botation matrix elements
c ca and cg

akka(k,k)*b(J ,k)-b(k,k)*aQj,k)
ajja(j ,j)*b(j ,k)-b(j ,j)'*aQj,k)
aba(j ,j)*b(k,k)-a(k,k)*bQj,j)
check--(ab*ab+4 .*akk*ajj )/4.
if (chdck) 50,60,60

30 write (iout,2020)
stop

60 sqchsqrt (check)
dlab/2 .+sqch
d2=ab/2. -sqch
dendl
if (abs(d2).gt.abs(dl)) den=d2
if (den) 80,70,30

70 caO0.
cg--a(j ,k)/a(k,k)
go to 90

80 caakk/lden
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cgu-aj i/den
c perform generalize rotation to zero the present off-diagonal

c element
90 if (n-2) 100,190,100
100 jplinj+1

jul-i-i
kpl1k+1
kmlk- 1
if (jml-i) 130,110,110

110 do 120 iinl,jul
ajma(ilj)
bjb(i,j)
ak-a~i,k)
bk--b(i,k)
aC i, j)-aj+cg*ak
b(i,j )=bj+cg*bk
a (i,k)=ak+ca*aj

120 b(i,k)inbk+ca*bj
130 if (kpl-n) 140,140,160
140 do 150 i=kpl,n

aja(j ,i)
bjb(j ,i)
ak--a(k,i)
bkb~k, i)
a (j, i)=aj+cg*ak
b(j ,i)=bj+cg*bk
a~k, i)=ak+ca*aj

150 b(k,i)=bk+ca*bj
160 if (jpl-kml) 170,170,190
170 do 180 ijpl,kml

aja(j,i)
bj=b(j ,i)
ak-a(i,k)
bk=bCi , k)
a~ , i)=aj+cg*ak
b (j , i) bj +cg*bkP
a~i ,k)=ak+ca*aj

180 b(i,k)=bk+catbj
190 aka~k,k)

bk-b(k,k)
a(k,k)-ak+2.*ca*a(j ,k)+ca*ca*a(j ,j)
b(k,k)=bk42.*ca*b(j ,k)+ca*ca*b(j ,j)
a(j,j)ina~j,j)+2.*cg*a(j ,k)+cg*cg*ak
b~j ,j)=b(j,j)+2.*cg*b(j ,k)+cg*cg*bk
a(j,kl)0.
b(j,k)0-.

c update the eigenvector matrix after each rotation
do 200 i1l,n
xjx(i,j)
xk-x Ci, k)
x(i,j )-xj+cg*xk

200 x(i,k)=xk+ca*xj
210 continue
c update the iegenvector after each sweep
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do 220 i=l,n
if (a(i,i).gt.O..and.b(i,i).gt.O.) go to 220
write (iout,2050)
stop

220 eigv(i,l)=a(i,i)/b(i,i)
if (ifpr.eq.0) go to 230
write (iout,2030)
write (iout,2010) (eigv(i,l),i-1,n)

c check for convergence
230 do 240 i=l,n

toL-rtoL*d(i, 1)
dif=dabs(eigv(i, 1)-d(i, 1))
if (dif.gt.toL) go to 280

240 continue
c check all off-diagonal elements to see
c if another sweep is required

eps=rtoL**2
do 250 j1l,nrjj=j+1
do 250 kujj,n
epsa=(a(j,k)*a(j ,k))/(a(j,j)*a(k,k))
epsb=(b(j,k)*b(j ,k))/(b(j ,j)*b(k,k))
if ((epsa.Lt.eps).and.(epsb.Lt.eps)) go to 250
go to 280

250 continue
c fill out bottom triangle of resultant
c matrices and scale eigenvectors
255 do 260 i=l,n

do 260 j=l,n
a(j,i)=a(i,j)

260 b(j,i)=b(i,j)
do 270 j=l,n
bb=dsqrt(b(j ,j))
do 270 k=l,n

270 x(k,j)--x(k,j)/bb
return

c update D matrix and start new sweep,if allowed
280 do 290 i=l,n
290 d(i,l)=eigv(i,l)

if (nsweep.Lt.nsmax) go to 40
go to 255

2000 format (5x,'SWEEP NUMBER IN JACOBI = ',i3)
2010 format (6e20.12)
2020 format (10x,'MATRIX NOT POSITIVE DEFINE ( B*2-4AC < 0), STOP!')
2040 format (10x,'MATRIX NOT POSITIVE DEFINE (DIAGONAL < 0), STOP!')
2030 format (10x,'CURRENT EIGENVALUE IN JACOBI ARE :')
2050 format (10x,'MATRIX NOT POSITIVE DEFINE (DIAGONAL < 0,FOR UPDATE'

1 ,' STIFFNESS AND MASS MATRIX), STOP!')
end
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subroutine load
common/par/ methodkind,nunp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif ,wlod
common/slv/ a(50,25).,b(S0)
common/mem/ mtypeC50),ijC5O,2),mid(50),mlc(50),alfa(50),

1 mrel(50,2) ,thetai(50) ,thetaj (50)
common/mlib/ xaC25),ziC25),yi(25),xjCZ5),avyC25),
1 avzC25) ,mcurv(25)
common /lod/ fi(5O,12),ax,ay,az
common /nod/ x(25),yC25),zC25),ntype(25),ir(25,6),ui(25,6)
common/mat/ e(5),sigma(5),epsiln(5),prC5),g(5),rho(5)
coon /stif/ s(12,12),r(3,3),tC12,12),st(l2,l2),tf(l2),p(l2)
dimension u(12)
double precision a,b,s ,r,t ,st ,tf,u, fi,sl ,dsqrt ,xp,yp,zp,xzp

c initialize routine
nq lnq+l
do 5 k-1,numem
do 5 1=1,neq
p(l)0O.0

uC 1)0 .0
fi(k,l)0-.0

5 continue
if Cnlnd) 410,410,360

c read and write concentrated nodal loads
360 writeC6,361)
361lformat( 37x,45h CO0 N CE N TR A T E D JONT L0A D S///

116x,5hJoint ,6x,8hForce(X) ,6x,8hForceCY) ,6x,BhForce(Z) ,7x,
29hMoment CX) ,5x,9hl~oment(Y) ,5x,9h1~oment(Z)/)
do 405 1=1,nlnd
read (5,1120) nl,(p(lk),lk-1,6)

1120 format(i5,/,5(flO.4,/),fl0.4)
write(6,362) nl,(p(lk),1k1-,nq)

362 format(l4x,iS,2x,3fl4.4,3f14.2)
c compute load vector (B)

do 405 kk-l,nq
k-nq*nl- Cnq-kk)
b (k)=p kk)

405 continue
C. read and/or compute and write member loads
c member loads due to gravity

410 do 300 iml1,numem
mmid(im)
inmtype Cim)
w-ay*xa~in)*rho(m)

Jij (im,2)
xpx~j)-x~i)
yp-y(j)-y(i)
zpz C) -z Ci)
s ldsqrt Cxp**2+yp**2+zp**2)
xzpdsqrt (s l**2-yp**2)
do 10 iil,12

10 p~ii)0O.0
if (mrel~im,l).eq.0.and-mrel~im,2).eq.0) go to 100
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if (mrel~im,1).gt.0.azxd.mrel~im,2).gt.0) go to 105
if (mrel(im,l).gt.0.and.mrel(im,2).eq.0) go to 110
if (mrel(im,1).eq.0.and.mrel(im,2).gt.0) go to 115

100 call did (l,w,yp,xzp,sl) A

go to 120
105 call did (2,v,yp,xzp,sl)

go to 120
110 call did (3,w,yp,xzp,sl)

go to 120
115 call did (4,w,yp,xzpsl)
120 continue

go to (121,122,123,124), kind
121 p(3)-p(7)

p(4)-p(8)
go to 124

122 pC3)-p(6) A
p(4)=p(7)
P(S)=P(S)
p(6)up(12)
go to 124

123 p(4)-p( 7)
p(5)inp(8)0
p(6)=pc9)

124 continue
c transform (P) to global coordinates-

ninim
call rotate (2,n)
do 306 jjl,neq
fi(im,jj)atf(jj)

306 tf~jj)=-tf~jj)
c merge gravity loads

call merge (i,J,2)
300 continue 3
420 if (nlmem) 490,490,425
425 write (6,600)
600 foriat(10(/),29x,58hJ01N T FO0R C ES F RO0M L0A D ED M

1 E M1 B E R S///llx,6hflember,3x,4hNode,5x,8hForce(X),6x,8hForce(Y),
26x,8hForce(Z),7x,9hMoment(X),5x,9hloment(Y),5x,9hloment(Z)/)
do 423 1-1,nlmem
read(S,1121) mn,i,Cp(lm),1m1,6)

1121 format(i5,/,i5,/,5(flO.4,/),fl0.4)
read(5,1122) j,(p(lm),1m=7,12)

1122 forma(i5,/,5(fl0.4,/),flO.4)
411 write(6,601) m,i,Cp~lk),lkml,nq)
601 format(l0x,i5,3x,i5,3f14.4,3f14.2)

write(6,602) J , p(lk) ,lk-nql,neq)
602 format(18x,i5,3fl4.4,3f14.2)

call rotate (2,n)
do 412 iiinl,neq
fi(n, ii)=fi(mn,ii)*tf(ii)

412 continue
c merge forces due to member loads

I IA



call merge (i,j,2)
423 continue

c impose initial displacement boundary conditions
490 do 424 l=1,numem

i=ij (1, 1)
J=j(1,2)
minmtype(1)
if (ntype(i).lt.l) go to 30
do 35 jj=l,nq

35 u(jj)=ui(i,jj)
30 if(ntype(i).lt.l.and.ntype(j).lt.l) go to 25

do 40 jj=l,nq
kk-j j+nq ,

40 u(kk)=ui(j,jj)
idl_
go to (41,42,41,44), kind

41 call strut (id,i,j)
-go to 46

42 if (mcurv(m).ne.0) call curvbm (id,i,j)
if (mcurv(m).ne.0) go to 46
call beam2 (id,i,j)
go to 46

44 call beam (id,i,j)
46 do 50 jj=l,neq

tf(jj)=O.O
do 45 kk-l,neq

45 tf(jj)--tf(jj)+s(jj,kk)*u(kk)
tf(jj)=-tf(jj)

50 continue
c compute load vector (b)

call merge (i,j,2)
25 continue

424 continue
write (6,1024)

1024 format (8(/),'The System Load Vector (B)',//)
do 500 ii=i,numnp
n--nqii- (nq-1)
nn-nq* ii
write (6,1025) ii,(b(k),k--n,nn)

500 continue
1025 format (i5,6e19.7)

c reduce the load vector (B)
call bound(2)
return

end
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subroutine loweig Cnmc,numeq,uzband)
coaimon/slv/ a(50,25),b(50)
conuon/xmd/ xmass(50) ,damp(50,25)
common/matrix/ 1a(50) ,tl(50) ,t2(50) ,f(50)
common/rr2/ rfCSO,50),rzCSO,50),rzl(50,50),rz12C50,50)
common/eign/ eigvec(50,24),rho(24) ,a4(50,50)
double precision a,b,xma3S,damp,tl,t2,f
double precision rf,rz,rzl,rzl2,eigvee,rho,a4
memo
tol.=1.00 E-06
do 305 iiinl,numeq
f~ii)-xmass(ii)

305 b(ii)-f(ii)
306 call solver (1)
307 call solver (2)

rho l-0.
do 310 iiul,numeq

310 rholmrhol~b(ii)*f Cii)
do 315 iiinl,numeq

315 f(ii)=b~ii)*xuass~ii)
rho2-0.
do 320 iiulnumeq

320 rhoZinrho2+b(ii)*f(ii)
nmc-nmc+1
if (nmc.gt.l) go to 330
rho(2)-rhol/rho2
do 321 iiul ,numeq
f(ii)-f(ii)/rho2**.S

321 b~ii)nf (ii)
go to 307

330 rho~l)=rhol/rho2
if Cabs(1.-rho(1)/rho(2)).Le-tole) go to 350
do 331 iil,numeq
f(ii)=f(ii)/rho2**.5

331 b(ii)=f(ii)
rho(2)=rho(l)
go to 307

350 do 351 ii~l,numeq
351 eigvec(ii,l)-f(ii)/(xuass(ii)*rho2**.5)

return
and
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subroutine matinv(n,wstif)
c matrix inverse c: input, output still is c

c where the matrix d is operating matrix
common/rr3/cCSO,50),a2C50,50),a3(50,50),d(50,50),1a2(5O,50)
double precision c,d,a2,a3,p2,p3
do 10 J-l,n
do 10 k-l,n

10 d(j,k)0O.
do 11 1c-1,n

11 d~lc,k)1l.
do 55 i-l,n
p2inc(i,i)
do 40 j1l,n
c(i~j)=c(i,j)/p2

40 d(i,j)=d~i,j)/p2
do 51 icl,n
p3--c(ic, i)
do 50 kal,n
if (ic-i) 21,51,21

21 c(ic,k)-c(i,k)*p3+c(ic,k)
d(ic,k)-d~i,k)*p3+d~ic,k)

50 continue
51 continue
55 continue

do 70 itinl,n
do 70 isl,n

70 c(it,is)=d(it,is)
if (wstif.eq.0) return
do 800 iil,n

800 write (6,1000) (c(ii,jj),jj=l,n)
1000 format (6e13.6)

return
end
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subroutine merge (ij,imergo)
common/par/ method,kind,numnp,nstrut ,nbeam,numeni,nrnp ,nmrel ,mband,
1 nlnd,nlmem,neq ,nq,numeq,nlc ,nif ,wstif ,wrstif ,wlod
common/sly! a(50,25),b(50)
common/xmd/ xmass (50) ,damp(50,25)
common /stif/ sC12,12),r(3,3),t(12,12),st(12,12),tf(12),p(12)
common /xmss/ xms(12)
dimension ndf(12)
double precision a,b,s ,r,t,st,tf ,xmass ,damp,xms
go to (5,16), imerge

c form structure stiffness matrix
5 do 2 k1l,nq
kkk+nq
ndf(k)=nq*i- (nq-k)
ndf~kk)=nq*j -(nq-k)

2 continue
do 15 ii=1,neq
klndf (ii)
do 15 jjl,neq
k2-ndf(jj)
if(k2-kl) 15,10,10

10 k3=k2-kl+1
a~ki ,k3)=a(kl ,k3)+s(ii,jj)
if (k3.eq.1) go to 51
go to 15

51 go to (15,26) ,method
26 xmass(kl)=xmass(kl)+xms(ii)
15 continue

go to 25
c form structure load vector

16 do 20 iil,nq

kk--nq*j -(nq-ii)
inq i i+nq
b(k)=b(k)+tf (ii)
b(kk)=b(kk)+tf (inq)

20 continue
25 continue

return
end
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subroutine offs Cid,eps ,nx,nz, ipass)
coauion/engy/ strain(11,11,10,2),energd(10),dv(2)
coflmon/mem/ mtype(50),nd(50,2),mid(50),mlc(50),alfa(50),

1 mrel(50,2),thetai(50),thetaj(50)
common/mat/ e(5),sigma(S),epsiln(5),pr(5),g(5),rho(5)
common/off/ offset(11,11,10,2),toffs(11,11)
mmid( id)
if (ipass.ne.10). go to 200
strain(nx,nz,id,1)=strain(nx,nz,id,2)
strain(nx,nz,id,2)=eps
if (nz.eq.11) return
avstn=.5*(strain(nx,nz,id, 1)+strain(nx,nz+1,id,1))
avoff=.5*Coffset(nx,nz, id, 1)+offset(nx,nz, id, 1))
if (nz.eq.1.or.nz.eq.10) goto 130
de lvdv(2)
go to 131

130 delvdv(1) 9

131 energd(id)=energd(id)+(avstn-avoff)
1*(eps..strain(nx,nz,id,1))*delv 9

return
200 x0=(eps-offset(nx,nz,id,2))*e(m)

xlsigma(m)
x2=-sigma(m)
if (xO.gt.xl) go to 100 -

if (xO.Lt.x2) go to 110 %.
toffs(nx,nz)=offset(nx,nz, id,2)
return

100 toffs(nx,nz)=eps-epsiln(n)
return

110 toffs(nx,nz)=eps+epsiln(n)
120 return

end '
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subroutine order (n,s,numeq)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rz12C50,50)
common/matrix/ La(50) ,tl(50) ,t2C50) ,f(50)
double precision rf,rzrzl ,rzl2,tl ,t2,f
do 100 ii=l,numeq
if (s.Le.rz(ii,l)) go to 110

100 continue
write (6,1)
stop

110 if (ii-numeq) 115,125,125
115 it--numeq

do 120 in=ii,numeq-1
it=it-1
rz(it+1 ,1)=rz(it, 1)

120 La(it+l)=La(it)
if (ii-i) 135,135,125

125 do 130 iml,ii-1
rz(im,1)=rz(im, 1)

130 La(im)=La(im)
135 rz(ii,1)=s

La (ii)=n
1format (10x,' S IS TOO BIG IN SUBROUTINE ORDER')
return
end
subroutine range (ii,numeq,mband,mg,mbd)
mbdii+mband- 1
if (mbd.gt.numeq) mbdnumeq
mgii-mband+1
if (mg.Le.O) mg~l
return
end
subroutine rbound
common/par! method ,kind ,numnp ,nstrut ,nbeam,numem,nrnp ,nmrel ,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif .wstif,wrstif ,wlod

common /nod/ x(25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
common /rest/ res(50)
double precision res
do 60 n1l,numnp
do 60 kkl,nq
knq*n- (nq-kk)
if (ir(n,kk).eq.0) go to 60
res (k)0O.

60 continue
return
end
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subroutine restor (id,itt,rm)
integer wstif,wrstif,wlod
common/par/ method ,kind,numnp ,nstrut ,nbeam,numem,nrnp ,nmrel ,mband,

nlnd,nlmem,neq,nq,numeq,nlc,nif ,wstif,wrstif ,w-lod
common /nod/ x(25 ),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
common/mem/ mtype(50),nd(50,2),mid(50),mlc(50),alfa(50),

1 mrel(50,2) ,thetai(50) ,thetaj(50)
common/mlib/ xa(25),zi(25),yi(25),xjC25),avy(25),

avz(25),mcurv(25)
common/mlib2/ tf(25),bf(25),tw(25),bw(25)
common/mat/ e(5),sigma(5),epsiln(5),pr(5),g(5),rho(5)
common /off/ offset(l1,11,l0,2),toffs(11,11)
common/rest/res (50)
common/soil xdp(50,3),xld(5O,2),x2d(50,3)
common/engy/ strain(11,11,10,2), energd(10),dv(2)
dimension epa~li) ,epz(11) ,epc(1l) ,iwi~il) ,iw2(ll) ,tryoff(1l ,11)
dimension nyie(2),width(l0),zx(5),dz(10)
double precision sL,dsqrt,xp ,yp,xdp,xld,x2d, res
double precision costhi,sinthi,cl,c2,c3,c4,c5,c6,ql,q2
double precision xaa,xbb,ya,yb,thitaa,thitab,paxi
iL-nd(id, 1)
jrnd(id,2)
xpx(jr) -x(iL)
ypy(jr)-y(iL)
sLdsqrt (xp,**2+yp--'*2)
m-mid(id)
nmtype(id)
dzl~bw(n)/4.
dxsL/ 10.
yme(m)
costhi=(x(jr) -x(iL) )/sL
sinthi=(y(jr)-y(iL) )/sL
dz (1)=t f(n)
width(1)=bf(n)
zx(l)=bw(n)+tf(n)/2.
do 140 kl=2,5
xklfloat (ki)
width(kl)=tw(n)
zx(7-kl)=(xkl-1 .5)*dzl

140 dz(7-kl)=dzl
do 145 kl=l,5

145 dz(kl+5)=dz(6-kl)
dv( )=dx*dz(1)*width( 1)
dvC2)=dxdz(2)*width(2)
xAaxdp(iL*3-2,3)*costhi+xdp(iL*3-1,3)*sinthi
ya=-xdp~iL*3-2,3)*sinthi+xdp(iL*3-1,3)*costhi
thit&Axdp(iL*3 ,3)
xBbxdp(jr*3-2 ,3)*costhi+xdp(jr*3.1 ,3)*,'sinthj
yb=-xdpjr*3-2,3)*sinthi+xdp(jr*3-1,3)*costhi
thitaBxdp(jr*3 ,3)
paxiymxa (ny)(xBb-xAa)
nii0O
izero0O
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ipass~l
260 if (itt.ne.1) go to 100

h3=0.
h4=0.
h5=0.
go to 200

c Evaluate h3 ,h4 and h5
100 if (nii.ne.0) go to 101

if Cnn.eq.2) go to 105
do 103 iil,1l
do 103 jjl,11

103 tryoff(ii,jj)=2.*offset(ii,jj,id,2)-offset(ii,jj,id,1)
go to 101

105 do 106 iil,ll
do 106 jjl,l1

106 tryoff(ii,jj)=offset(ii,jj,id,2)
*101 h3=0.

do 110 jjl,11
epa(jj)0O.
do 110 iil1,5
haxxl=(tryoff(jj ,7-ii)+tryoff(jj ,6-ii))*.5
haxx2(tryoff(jj,ii+5)+tryoff(jj,ii+6))*.5

110 epa(jj)=epa(jj)+(haxx1-haxx2)*zx(6-ii)*width(6-ii)*dz(6-ii)
do 111 jjl,l1
if (jj.eq.1.or.jj.eq.11) go to 112
h3=h3+epa (jj)
go to 111

112 h3=h3+.S*epa(jj)
111 continue

h3=h3*ym*dx
h4=0.
do 121 iil,11
epc(ii)0O.
do 121 jjl,ii
if (jj.eq.1.or.jj.eq.ii) go to 122
epc(ii)=epc(ii)+epa(jj)
go to 121

122 epc(ii)=epc(ii)+epa(jj)*.5
121 continue

do 123 iil1,11
if (ii.eq.1.or.ii.eq.l1) go to 124
h4bh4+epc (ii)
go to 123

124 h4=h4+epcii)*.5
123 continue

h4=h4*ym*dx**2
do 310 jjl,1l
epc (jj) =0.
dc 310 kkl1,l0
epc(jj)=epc(jj)+(tryoff(jj ,kk)+tryoff(jj ,kk+1))*.5
1 *width(kk)*dz(kk)

310 continue
h5=0.

* do 330 ii=1,11
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if (ii.eq.1.or.ii.eq.11) go to 331
h5=h5+epc~ii)
go to 330

331 h5=h5+epc(ii)*.5
330 continue

h5=h5*dx*ym
200 pax=(paxi-h5)/sL

qlym*zi (n)* (thitaB-thitaA) -h3
q2=ym'-zi(n)*(yB-yA-thitaA~sL) -h4
c1=12.*( .5*sL*ql..q2)/ CsL**3)
c2=12.*(q2*.5-q1*sL/6.)/CsL**2)
do 210 nxl,11
if (itt.eq.1) go to 216
hlepc (nx)*ym
go to 217

216 hl=0.
217 if (itt.eq.1) go to 218

h2=epa(nx)/zi(n)
go to 202

218 h2=0.
202 cappa=(c1*dx*(nx-1)+c2)/(ym*zi(n))+h2

epaa=(pax+hl)/ (ym~xa(n))
epcccappa*(bw(n)+tf(n))
do 270 nzl1,4
epz(6-nz)=epcc*dz1*nz/ Cbw(n)+tf(n))

270 epz(6+nz)=-epz(6-nz)
epz (1 )epcc
epz(l1)=-epcc
epz(6)0O.
do 212 nzl,11

212 epz(nz)=epz(nz)+epaa
do 213 nzl,l1
epsepz (nz)
call offs (id,eps,nx,nz,ipass)

213 continue
210 continue

if (ipass.eq.1O) go to 380 a

do 220 i=1,11
do 220 j=1,11
if (toffs(i,j).eqtryoff(i,j)) go to 220
if (toffs(i,j) .eq.0.and.tryoff(i,j) .ne.0. )goto 221
if (toffs(i,j) .ne.0.and.tryoff(i,j) .eq.0. )goto 222
erx=(toffs(i,j)-tryoff(i,j))/tryoff(i,j)
erxabs (erx)
izeroizero+ 1
if (erx.Le.0.05) go to 220
go to 240

221 erxabs(tryoff(i,j))
izeroizero+l
if (erx.Le.0.05) go to 220
go to 240

222 erxabs(toffs(i,j))
izeroizero+1
if (erx.Le.0.05) go to 220
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go to 240
220 continue

if (izero.eq.O) go to 380
so to 300

240 nii-nii+1
c print out the intermediate offset

if (wstif.eq.0) go to 340
350 write (6,24) id,nii

do 360 i=1,11
jx=O
do 370 J-1,11
if (toffs(i,j).eq.O.) go to 370
jx-jx+1
epc(jx)-toffs(i,j)
iw2(jx)=j
iwl1(jx )=j

370 continue
if (jx.eq.0) go to 360
write (6,22) (iwl(jj) ,iw2(jj) ,epc(jj) ,jjl,jx)

360 continue
340 if (nii.eq.5) go to 300

do 250 jjl,l1
do 250 iil,11

250 tryoff(ii,jj)=toffs(ii,jj)
go to 260

c Move the offset to the next step
300 do 320 i=1,11

do 320 j1l,11
epc(j )0.
offset(i,j ,id,1)=offset(i,j ,id,2)
offset(i,j ,id,2)=(toffsi,j)+tryoff(i,j))*.5

320 tryoff(i,j)=offset(i,j,id,2)
ipass=10
go to 260

c Restoring forces
380 c3=(Ym*xa(n)*(xbb-xaa)-h5)/sL

c4=c 1*sL+c2
c5=-c *s inthi-c3*costhi
c6=cl*costhi-c3*s inthi
res C3*iL-2)=res (3*iL-2)+c5
res(3*iL-1)=c6+res (3*iL-1)
res (3*iL)=-c2+res (3*iL)
res(3*jr-2)=resC3*jr-2) -c5
res (3*jr-1)=-c6+res C3*jr- 1)
res (3*jr)=c4+res (3"*jr)

c check plastic hinge
if (nn.ne.1) return

do 451 j=1,11,10

nyield=0 -
do 450 i1l,ll
if (offset(j,i,id,2).eq.0.) go to 450
nyieldnyield+l
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450 continue
nyie(mm)--nyield

451 continue
do 452 is=1,2
if (nyie(is).Lt.1O) go to 452

453 write (6,25) nd(id,is),id
452 continue
c Write down the final offset
460 if (wlod.eq.0) return

if (izero.eq.0) go to 440
50 write (6,23) id

do 431 i=1,11
jx=0O

do 430 j=1,11
if (offset(i,j,id,2).eq.0.) go to 430
jx=jx+1
epc(jx)=offset(i,j ,id,2)
iw2(jx)=j
iwli x)=i

430 continue
if (jx.eq.O) go to 431
write (6,22) (iwl(jj),iw2(jj),epc(jj),jj=l,jx)

431 continue
return

440 write (6,20) id,nii
20 format (' THE ITERATION TIMES OF OFFSET AT ',i3,x,

1'th MEMBER ARE',i5)
22 format (6('[',i2,',',i2,'] =',ell.4,'; '))
23 format ( THE FIANL OFFSET OF THE BEAM AT ',13,' MEMBER')
24 format THE ITERATED OFFSET AT',14,' MEMBER FOR NII=',I5,

i' ARE:')
25 format PLASTIC HINGE OCCURS AT NODAL POINT',i3,' MEMBER #',13)
999 return

end
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subroutine rotate Cnrot,id)
common/par/ method,kind,numnp,nstrut ,nbeau,numem,nrnp,nmrel ,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common /nod/ x(25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
common/mem/ mtype(50) ,nd(50,2) ,midC5O) ,mlc(50) ,alfa(50),

1 mrel(50,2) ,thetai (50) ,thetaj (50)
common/mlib/ xaC25),zi(25),yi(25),xj(25),avy(25),
1 avz(25),mcurv(25)
common /stif/ s(12,12),r(3,3) ,t(12,l2),st(l2,12),tf(l2),p(12)
double precision s ,r,t ,st ,tf,cx,cy,cz,rad,,alpha,sina,cosa,
1 sl,dsqrt,xl,x2,yl,y2,zl,z2,dsin,dcos
mmtype(id)
if (mcurv(m)..ne.0) go to 99

c initialize routine
i-iid(id, 1)
jnd Cid ,2))
xlx i)
x2=-x(j)
yly(i)
y2=y(j)
z 1z Ci)
z2=z(j)
sl=dsqrt ( x2-xl)**,2+Cy2-y1)**2+Cz2-zl)**2)

c compute member direction cosines
A cx-(x2-xl)/sl

cy-(y2-yl)/sl

c generate transformation matrix (t) 12
14 do 20 iil,neq

do 20 jjl,neq
20 t(ii,jj)=0.0

go to (106,85,105,21), kind
c three dimensional frame transformation

21 alphaalfa(id)/57.2957795
alpha-alfa(id)/57 .2957795
sinadsin(alpha)
cosadcos (alpha)
r C1 ,1)=cx
r (1,2)=cy
r(l,3)=cz
if Ccx**2+cz*H*2) 25,30,25

30 if(y2-yl) 45,45,50
45 cy--l.

go to 55
50 cy--l.
55 r(2, 1)=-cy*cosa

r (2,2) =0.0
r(2,3)=sina
r(3, 1)=cy*sina
r (3,2) =0.0
r(3 ,3)=cosa
go to 35

25 raddsqrt (cx**~2+cz**2)
rC2,l)=(-cx*cy~cosa-cz*sina)/rad
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r(2, 2)=rad*cosa
r(2 ,3)=(-cy*cz~cosa+cx*sina)/rad
r(3, 1)=(cx*cy~esina-cz*cosa)/rad
r(3 ,2)=rad*sina
r(3 ,3)=(cy'cz*sina+cx*cosa)/rad

35 do 40 k=1,3
k 1=k+3
k2=k+6
k3=k+9
do 40 1=1,3
t(k,1)=r(k, 1)
11=1+3
t~kl,11)=r(k, 1)
12=1+6
t(k2, 12)-r(k, 1)
13=1+9
t~k3,13)=r(k,1)

40 continue
go to 99

c two dimensional frame transformation
85 do 90 iiIl,nq

do 90 jjl,nq
90 r(ii,jj)0O.0

r(1, 1)cx
r(1,2)=cy
r(2, 1)=-cy
r(2,2)=cx
r(3,3)= .0
do 95 k1l,nq
kl1k+nq
do 95 1=1,nq
t(k, l)=r(k, 1)
1 11+nq
t(kl,11)=r(k, 1)

95 continue
go to 99

c three dimensional truss transformation
105 t(1,1)=cx

t(1,2)=cy
t(1,3)=cz
t(2,4)=cx
t (2,5) =cy
t(2,6)=cz
go to 99

c two dimensional truss transformation
106 t(1,1)=cx

t(l ,2)=cy
t(2,3)=cx
t(2 ,4)=cy

99 go to (100,200,300), nrot
c transform (S) to structure coordinates

100 do 60 iil,nif
do 60 jjl,neq
St (ii, j)=0.0
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do 65 kkl,nif
65 st~ii,jj)=st~ii,jj)+s~ii,kk)*t(kk,jj)
60 continuea

do 70 iil,neq
do 70 jjl,neq
s(ii ,jj) =0.0
do 75 kkl,nif

75 s(ii,jj)=s(ii,jj)+t(kk,ii)*st(kk,jj)
70 continue

go to 80
c transform loads to structure axes

200 do 205 iil,neq
t f(ii) =0.0
do 110 jjl,nif

110 tf~ii)=tfii)+t(jj,ii)*p(jj)
205 continue

go to 80
c transform forces to member axes

300 do 305 iil,nif
tf(ii)=0. 0
do 305 jjl,neq
tf(ii)=tfii)+t(ii,jj )*p(jj)

305 continue
80 continue

return
end
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subroutine saa (i,nwr)
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq ,nlc,nif ,wstif ,wrstif ,wlod
common/dlod/ dt,nti,ns(50,10),dl(50,l0),ndof(10),ndofl
couunon/rrl/ zz(50,50,3),z12(50,50,2),z2(50,50,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,50)
coimmon/cross/ vv(50,50),aa(50,50),vz(50,50),az(50,50),av(50,50)
comnon/flagw/ inpt,ifpt,jpnp,intpt,iftpt,jpnt,iplot,meanw, iwvar
dimension aal(50,50,2)
double precision ;v, aa,vz,az,av, aal
double precision rf,rz,rzl,rzl2,zz,zl2,z2
open (unitl13,file='plotaa' ,status= 'new')

c This subroutine evaluate aa(i,j)= E [ a aCT)
c Calculate the next pre-computation

do 200 i=l,numeq
do 200 j1l,numeq

1 -2.*z12(j,i,2)+rf(i,j)+rf(j,i))
200 continue

c Calculate the present aa
do 210 i1l,numeq
do 210 j=l,numeq

210 continue
do 220 iil,numeq
do 220 jjl,numeq

220 aal(ii,jj,2)=aal(ii,jj,1)
if (i.gt.iftpt) return
if (i-intpt) 405, 420, 430

430 nwrnwr+1
if (nwr.eq.jpnt) go to 420
return

420 if (iplot.ne.0) go to 440
write (6,3) i
write (6,4)
do 460 iiinpt,ifpt,jpnp

460 write (6,5) (aa(ii,jj),jjinpt,ifpt,jpnp)
nwr0O
re turn

440 do 490 iiinpt,ifpt,jpnp%
490 write (13,5) (aa(ii,jj),jj=inpt,ifpt,jpnp)

nwr0O
3 format (/5x,' NUMBER OF TIME STEP' ,3x,i5)
4 format (' aa~ii,jj) '

5 format (6el5.8)
405 return

end
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subroutine say (inwr)
integer wstif,wrstif,wlod
common/par/ ,ethod,kind,numnp,nstrut,nbea,flue,rlp,fmrel ,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif ,wlod
common/dlod/ dtnti,ns(50,l0),dl(50,10),ndof(0),ldofl
common/flagw/ inpt~ifpt,jpnp,intpt,iftpt,jpnt,iplot,meanw,iwvar-
common/rrl/ zz(50,50,3),z12(50,50,2),z2(5O,5O,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(5O,5O)
common/cross/ vv(50,50),aa(50,50),vz(50,50),8z(5O,5O),av(50OSO)-
dimension aa2(50,50,2)
double precision vv,aa,vz,az,av,aa2
double precision rf,rz,rzlrzlZ,zz,z12,z2
open (unit=14,file='plotav' ,status='new')

C This subroutine evaluate av(i,j)= E [ a v(T)
C Calculate the next pre-computation

do 200 i=l,numeq
do 200 j1l,numeq
aa2(i,j ,l)=(zz(i,j ,3)-zz(i,j ,l)+2.*z12(i,j ,2)
1 -rf(i,j)+rf(j,i))

200 continue
C Calculate the present aa O

do 210 i=l,numeq
do 210 j1l,numeq

210 continue
do 220 i1l,numeq
do 220 j=l,numeq

220 aa2(i,j,2)=aa2(i,j,l)
if (i.gt.iftpt) return
if (i-intpt) 405, 420, 430

430 nwr=nwr+l
if (nwr.eq.jpnt) go to 420
return

420 if (iplot.ne.0) go to 440
write (6,3) £
write (6,4)
do 460 iiinpt,ifpt,jpnp

460 write (6,5) (av(ii,jj),jj-xnpt,ifpt,jpnp)
nwr0O
return

440 do 490 iiinpt,ifpt,jpnp
490 write (14,5) (av(ii,jj),jjinpt,ifpt,jpnp)

nwr=0
3 format (/Sx,' NUMBER OF TIME STEP' ,3x,iS)
4 format C av(ii,jj) '

5 format (6e15.8)
405 return

end
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subroutine saz (i,nwr)
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel ,mband,
1 nind ,nlmem,neq ,nq,numeq,nlc ,nif ,wstif ,wrstif ,wlod
common/dlod/ dt,nti,ns(50,l0),dl(50,l0),ndof(10),ndofl
common/flagw/ inpt,ifpt,jpnp,intpt,iftpt,jpnt,iplot~meanw,iwvar
common/rrl/ zz(50,50,3) ,z12(50,S0,2) ,z2(50,50,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,50)
common/cross/ vv(50,50),aa(50,50),vz(50,50),az(50,50),av(50,50)
dimension aa4(50,50,2)
double precision vv,aa ,vz ,az ,av ,aa4
double precision rf,rz,rzl,rzl2,zz,z12,z2
open (unitl15,file= plotaz' ,status='new')

c This subroutine evaluate az(i,j)= E [a z(T)
c Calculate the next pre-computation

do 200 i=l,numeq
do 200 j1l,numeq

200 continue
c Calculate the present aa

do 210 i1l,numeq
do 210 j1l,numeq

210 continue
do 220 iil,numeq
do 220 jj=l,numeq

220 aa4(ii,jj,2)=aa4(ii,jj,l)
if (i.gt.iftpt) return
if (i-intpt) 405, 420, 430

430 nwrnwr+l
if (nwr.eq.jpnt) go to 420
return

420 if (iplot.ne.0) go to 440
write (6,3) i
write (6,4)
do 460 iiinpt,ifpt,jpnp

460 write (6,5) (az(ii,jj),jjinpt,ifpt,jpnp)
nwr0O
return

440 do 490 iiinpt,ifpt,jpnp
490 write (15,5) (az~ii,jj),jj=inpt,ifpt,jpnp)

nwr=0
3format (/5x,' NUMBER OF TIME STEP' ,3x,i5) I

4 format (' az(ii,jj) '
5 format (6el5.8)

405 return
end
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subroutine sbound (nbound)
common/par/ method ,kind ,numnp ,nstrut ,nbeam,numem,nrnp ,nmrel ,mband,

nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif ,wrstif,wlod
common /nod/ xC25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
common /rr3/ al(50,50),a2(5O,50),a3(50,50),xLa(50,50),La2(50,50)
common /eign/ eigvec(50,24),rho(24),a4(50,50)
double precision al,a2,a3,xLa,eigvec,rho,a4
do 60 n=1,numnp
do 60 kkl,nq
if (ir(n,kk).eq.0) goto 60
k--nq*n- (nq-kk)
do 70 iil1 numeq
if (ii.eq.k) go to 71
a2(k, ii)0O.
a2(ii,k)=0.
go to 70

71 a2(kk)1l.
70 continue
60 continue

if Cnbound.eq.1) return
do 160 n1l,numnp
do 160 kklnq
if (ir(n,kk).eq.0) goto 160
knq*n- (nq-kk)
do 170 iil,numeq
if (ii.eq.k) go to 171
ai~k, ii)0O.
al (ii ,k )=0.
go to 170

171 al(k,k)1l.
170 continue
160 continue

do 260 n1l,numnp
do 260 kkl,nq
if (ir(n,kk).eq.0) goto 260
knq*n- (nq-kk)
do 270 iil,numeq
if Cii.eq.k) go to 271
a3(k, ii)0O.
a3(ii,k)0O.
go to 270

271 a3(k,k)1l.
270 continue
260 continue

do 360 n1l,numnp
do 360 kkl,nq
if Cir~n,kk).eq.0) goto 360
knq*n- (nq-kk)
do 370 iil,numeq
if (ii.eq.k) go to 371
a4(k, ii)0O.
a4(ii,k)0O.
go to 370

371 a4(k,k)=l.
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370 continue 1
360 continue

return
end
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subroutine solver(isolve)
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod

common /slv/ a(50,25),b(50)
double precision a,b,diag,air,sum,dsqrt

nhw=mband-1

nfnumeq
go to (100,300), isolve

100 nred=O
itrig=O
lim=mband

101 if(nred+l-n) 102,500,500
102 nred=nred+l

diag=a(nred,l)

if (diag-l.Od-30) 601,601,110
110 diag=dsqrt(diag)

c go to 601 if matrix is singular or not positive definite
c divide roe by square root of diagonal element

111 do 113 j=l,lim
113 a(nred,j)=a(nred,j)/diag

c reduce remaining block of numbers
201 do 251 i=l,nhw

l=nred+i
if(l-n) 211,211,251

211 air=a(nred,i+l)
c skip this row if multiplier air is zero

if(air) 221,251,221
221 do 231 j=i,nhw

m=l+j-i
231 a(l,m)=a(l,m)-air*a(nred,j+l)
251 continue

go to 101
601 itrig=nred

500 if(itrig) 600,610,600
c singular matrix

600 write(6,602) itrig
602 format(lx,35hSingular Matrix at Reduction NRED =,i4)
610 continue

go to 700
c reduce the right hand sides

300 continue

nred=O
301 if(nred+l-n) 302,401,401
302 nred=nred+l

c divide row by square root of diagonal element
b(nred)=b(nred)/a(nred,l)

c reduce remaining block of numbers
do 351 i=l,nhw
lnred+i
if(l-n) 311,311,351

311 b(1)=b(l)-a(nred,i+l)*b(nred)
351 continue

go to 301
c back substitution

201



401 b(n)-b(n)/a(n,1)
n 1n -1
do 451 iil,nl

sum=0.O
do 421 jjl,nhw

if(n'm) 451,421,421
421 sumsum+a(i,jj+l)*b(m)
451 b(i)=(b(i)-sum)/a(i,1)
25 continue

700 continue '

return
end
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subroutine sspace (nroot,nsmax)
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc ,nif ,wstif ,wrstif,wlod
common/modal/ stk(16,16),stm(16,16),qk(l6,l6),xLam(16,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(5O,50)
common/rr3/ al(50,50),a2(50,50),a3(50,50),xLa(50,50),1a2(50,50)
common/xmd/ xmass (50) ,dampC50,25)
common/eign/ eigvec(50,24),rho(24),a4(50,50)
common/matrix/ La(50),tl(50),t2(50),f(50)
common/slv/ a(50,25),b(50)
double precision rf,rz,rzl,rzl2,a,b,xmass ,damp,tl,t2,f
double precision al ,a2,a3,xLa,stk,stm,qk,xLam,eigvec,rho,a4

c This subroutine evaluate the eigenvalue and eigenvector
c by using subspace iteration, the trial vector is rzl2(i,j),
c the object matrices is K* and M* and the output eivalues are
c rho(i) ,i1l,nroot,the output eigenvectors are eigvec(i,j) ,j1l,nroot
c Determine the order of iteration vector

read (S,*) trix
nord=nroot
rz(l,l)=1.0 E+20
tolel1.0 E-06
nit=O
do 110 iil,numeq
do 110 jj=2,nord

110 rz12(ii,jj)=tr.x
do 115 iil,numeq
do 115 jj1l,numeq
al (ii ,jj+ii-l)=a(ii, jj)
rf( ii ,jj+ii-l)=a(ii,jj)

115 continue
do 116 iil,numeq
do 116 jjl,numeq
if (ii.eq.jj) go to 116
rf(jj ,ii)=rf(ii,jj)
al(jj ,ii)=a1(ii,jj)

116 continue
c Determine the starting iteration vector

do 120 iil,numeq
120 rzl2(ii,1)=xmass(ii)

c ordering the a(ii,1)/xmass(ii)
do 220 iil,numeq
s=a(ii, 1)/xmass~ii)
call order (ii,s,numeq)

220 continue
do 225 iil,nord-l
n2=La( ii)

225 rzl2(n2,ii+l)=rz(ii,1)
c Decomposing al =[K

145 call gauss (l,nord)
135 call gauss (2,nord)

c Form K* amd M*
do 140 iil,numeq
call range (ii ,numeq ,mband,mg,mbd)
do 140 jjl1,nord
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xLa (ii ,jj) =0.
do 140 kk=mg,mbd

140 xLa(ii,jj)=xLa(ii,jj )+rf(ii,kk)*rzl2(kk,jj)
do 150 iil,nord
do 150 jj=ii,nord
stk(ii,jj)=0.
do 150 kkl,numeq

150 stk(ii,jj)=stk(ii,jj)+rzl2(kk,ii)*'xLa(kk,jj)
do 160 iil,nord
do 160 jjii,nord
stm(iijj)=0.
do 160 kkl,numeq
stm(ii,jj)=stm(ii,jj)+rzl2(kk,ii)*rzl2(kk,jj)*xmass(kk)

160 continue
c Symmetric

do 165 iil,nord
do 165 jjii,nord
if (ii.eq.jj) go to 165
stm(jj ,ii)=stm(ii,jj) :
stk(jj ,ii)=stk(ii,jj)

rV 165 continue
c Find the eigenpairs for K* and M*

nit-nit+1
if (nroot.gt.2) go to 170
call eigen
go to 180

170 call jacobi(nord,nsmax)
c Check for convergence
180 if (nit.eq.1) go to 190

do 250 iil,nord
erlabs(l. -xLam(ii,2)/xLam(ii,1))
if (erl.gt.tole) go to 19-0

250 continue
go to 200

190 do 195 iil,nord
195 xLam(ii,2)=xLam(ii,l)

do 210 iil,numeq

L ~do 210 jjl,nord
xLa(ii,jj)0O.
do 210 kkl,nord

210 xLa(ii,jj )xLa(ii ,jj)+rzl2(ii,kk)*qk(kk,jj)
do 215 iil,numeq
do 215 jjl,nord

215 rzl2(ii,jj)=xLa(ii,jj)*xiass(ii)
go to 135

200 do 230 iil,numeq
do 230 jjl,nroot
eigvec(ii,jj)0O.
do 230 kkl,nroot

230 eigvec(ii,jj)=eigvec(ii,jj)+rzl2(ii ,kk)*qk(kkjj)
do 240 iil,nroot

format (3x,'NUMBER OF ITERATION IN SSPACE',2x,i5)
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return
end
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subroutine stiff
common/par/ method~kind,numnp,nstrut,nbeam,numem,nrnp,nmrel,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif ,wlod

common/slv/ a(50,25),b(50)
common/xmd/ xmass(50) ,damp(50,25)
common/meal mtype(50),ij(50,2),mid(50),mlc(50),alfa(50),
1 *~rel(50,2) ,thetai(50) ,thetaj (50)4

common/mlib/ xa(25),zi(25),yi(25),xj(25),avy(25),
1 avz(25),mcurv(25)

double precision a,bxmass,damp
do 5 id=1,numem
i=ij(id, 1)
j=ij (id,2)
n-id
mmtype (id)
go to (15,20,15,30), kind

15 call strut (n,i,j)
go to 10

20 if (mcurv(m).ne.0) call curvbm (n,i,j)
if (mcurv(m).ne.0) go to 10
call beam2 (n,i,j)
go to 10

30 call beam Cn,i,j)
10 continue

c merge element stiffness matrix
call merge (ij,l)

.5 continue
return
end
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subroutine strut (id,i,j)
common/par/ method ,kind ,rumnp,nstrut ,nbeam,numean,nrnp,nmrel ,mband,

1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstif,wlod
common /nod/ x(25),y(25),z(25),ntype(25),ir(25,6),ui(25,6)
cotumon/mem/ mtype(50),nd(50,2),mid(50),mlc(50),alfa(50),-

1 mrel(50,2) ,thetai(50) ,thetaj (50)
common/mlib/ xa(25),zi(2.5),yi(25),xj(25),avy(25),

avz(25),mcurvC25)
common/mat/ e(5),sigma(5),epsilnC5),pr(5),g(5),rho(5)
common /stif/ s(12,12),r(3,3),t(12,12),st(12,12) ,tf(12) ,p(l2)
common /xmss/ xms(12)
double precision s,r,t,st,tf,sl,sl ,dsqrt,xp,yp,zp,xms
i--nd(id,l)
j--nd Cid, 2)
xp--x(j)-x(i)
yp--Y(j)-y(i)
zpz(j )-z(i)
s 1-dsqrt (xp--,2+yp**2+zp--2)

c generate element stiffness matrix (s)
mmid(id)
nmtype Cid)
ym=e Cm)
area--xa (n)
rhrho Cm)
sl--xa(n)*ym/sl
5(1, 1) s1
s(l,2)=-sl
s(2,1)=-sl
s(2 ,2)=s 1

c transform (s) to global coordinates
call rotate (1,id)

c Form mass matrix
go to (99,101), method

101 do 100 iil,neq
xms(ii)0O.

100 continue
clrh*area*s 1/2.

xins(2)=ci
99 return

end
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subroutine svv (i,nwr)
integer wstif,wrstif,wlod
commnon/par/ method,kind ,numnp ,nstrut ,nbeam,numem ,nrnp ,nmrel ,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif ,wrstif ,wlod
common/dlod/ dt,nti,ns(50,10),dl(50,10),idof(1O),ndofl
common/f lagw/ inpt,ifpt,jpnp,intpt.iftpt,jpnt,iplot,meanw,iwvar
common/'rrl/ zz(50,50,3),z12(5O,50,2),z2(50,50,2)
common/rr2/ rf(50,50),rz(50,50),rzl(50,50),rzl2(50,50)
common/cross/ vv(50,50),aa(50,50),vz(50,50),az(50,50),av(50,50)
double precision zz,zl2,z2,rf,rz,rzl,rzl2
double precision vv,aa,vz,az,av
open (unit=16,file='plotvv' ,status='new')

c This subroutine evaluate vv(i,j)= E Iv v(T) JU
do 270 iil,numeq
do 270 jj=l,numeq
vv(ii,jj)=(zz(ii,jj ,3)+zz(ii,jj ,l)-rf~ii,jj)-rf(jj ,ii))/

1 (4.*dt**.'2)
270 continue

if (i.gt.iftpt) return
if (i-intpt) 405, 420, 430

430 nwr-nwr+1
if (nwr.eq.jpnt) go to 420
return

420 if (iplot.ne.0) go to 440
write (6,3) i
write (6,4)
do 460 iiinpt,ifpt,jpnp

460 write (6,5) (vv(ii,jj),jjinpt,ifpt,jpnp)
nwr0O
return

440 do 490 iiinpt,ifpt,jpnp
490 write (16,5) Cvv(ii,jj),jjinpt,ifpt,jpnp)

nwr0O
3 format (/5x,' NUMBER OF TIME STEP' ,3x,i5)
4 format (' vv(ii,jj) '

5 format (6e15.8)
405 return

end
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subroutine svz (i,nwr)
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut,nbeam,numem,nrnp,nmrel ,aband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif,wrstifwlod
common/dlod/ dt,nti,ns(50,10),dl(50l10),ndof(l0),ndofl
couimon/flagw/ inpt,ifpt,jpnp,intpt, iftpt,jpnt,iplot,meanw,iwvar
common/rrl/ zz(50,50,3),z12(50,50,2),z2(50,50,2)
common/rr2/ rf(750,50),rz(50,50),rzl(50,50),rzl2(50,50)
common/cross/ vv(50,50),aa(50,5O),vz(50,50),az(5O,50),av(50,50)
dimension aa3(50,50,2)
double precision vv,aa,vz,az,av,aa3
double precision rf,rz,rzl,rzl2,zz,zl2,z2
open (unit=17,file='plotvz' ,status='new')

c This subroutine evaluate vz(i,j)= E [ v z(T)
c Calculate the next pre-computation

do 200 i1l,numeq
do 200 j1l,numeq
aa3(i,j ,l)=-z12(j ,i,2)

200 continue
c Calculate the present as

do 210 i1l,numeq
do 210 j1l,numeq6
vz(i,j)=(aa3(i,j ,2)+z12(i,j ,2))/(2.*dt)

210 continue
do 220 i1l,numeq
do 220 j1l,numeq

220 aa3(i,j,2)=aa3(i,j,1)
if (i.gt.iftpt) return
if (i-intpt) 405, 420, 430

430 nwr-nwr+l
if (nwr.eq.jpnt) go to 420
return

420 if (iplot.ne.O) go to 440
write (6,3) i
write (6,4)
do 460 iiinpt,ifpt,jpnp

460 write (6,5) (vz(ii,jj),jjinpt,ifpt,jpnp)
nwr--0
return

440 do 490 ii=inpt,ifpt,jpnp
490 write (17,5) (vz(ii,jj),jjinpt,ifpt,jpnp)

nwr0O
3 format (/Sx,' NUMBER OF TIME STEP' ,3x,i5)
4 format (' vz(ii,jj) '
5 format (6el5.8)

405 return
end
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subroutine write(i ,nwr)
integer wstif,wrstif,wlod
common/par/ method,kind,numnp,nstrut ,nbeam,numem,nrnp,nmrel ,mband,
1 nlnd,nlmem,neq,nq,numeq,nlc,nif,wstif ,wrstif,wlod
common/random/ irandm,ncvdf,ntacv,nl(l0),n2(l0),ax(50,50,10),
1 nt(50,50,10),lori,nroot,nsmax,corri
coiunon/sol/ xdp(50,3),xld(50,2),x2d(50,3)
common/matrix/ la(50),tl(50),t2(50),f(50)
common/rest/ res(50)
common/kuz/ rx(50,50,3,8),ck(8)
common/rrl/ zz(50,50,3),z12(50,50,2),z2(50,50,2)
common/flagw/ inpt,ifpt,jpnp,intpt,iftpt,jpnt,iplot,meanw,iwvar 4
double precision xdp,xld,x2d,tl ,t2, f,zz,zl2,z2,rx,ck, res

400 if (i.gt.iftpt) go to 410
if (i-intpt) 410, 420, 430

430 nwr=nwr+l
if (nwr.eq.jpnt) go to 420
go to 410

420 if (iplot.ne.0) go to 440
if (meanw.eq.0) go to 450
write (6,3) i
if (lon.eq.2) go to 7
write (6,4)
do 460 iiinpt,ifpt,jpnp
write (6,3) ii, xdp(ii,3),xld(ii,1) ,x2d(ii,l) ,f(ii)

460 continue
go to 450

7 write (6,1)
do 6 iiinpt,ifpt,jpnp

6 write (6,5) ii, xdp~ii,3),xld(ii,l),x2d(ii,1),res(ii)
450 go to (470,480), irandm
480 if (iwvar.eq.0) go to 470

do 490 iiinpt,ifpt,jpnp
write (6,9) (zz(ii,jj,3),jj=inpt,ifpt,jpnp)

490 continueN
go to 470

440 if (meanw.eq.0) go to 500
if (lon.eq.2) go to 540
do 550 iiinpt,ifpt,jpnp
write (10,15) xdp(ii,3),f(ii)

550 continue
go to 500

540 do 560 iiinpt,ifpt,jpnp
write (10,15) xdp(ii,3),res(ii)

560 continue
500 go to (470,510), irandm
510 if (iwvar.eq.0) go to 470

do 520 iiinpt,ifpt,jpnp
write (11,9) (zz(ii,jj,3),jjinpt,ifpt,jpnp)

520 continue
470 nwr0O

c Move 3rd and 2nd points to 2nd and 1st point
410 do 399 iil,numeq

xdp(ii,1)=xdp(ii,2)

210 4
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xdp (ii ,2)-xdp Cii ,3)
399 continue

if(irandm.eq. 1) return
do 380 ii-l,numeq
do 380 jj=1,numeq
zz(ii,jj ,1)zz(ii,jj ,2)
zz~ii,jj ,2)=zz(ii,jj ,3)
z2Cii,jj ,l)=z2(ii,jj ,2)
u12(ii,jj ,1)=zl2(ii,jj ,2)

380 continue
do 385 iil,numeq
do 385 jjl,nwneq
do 385 np=l,nroot
rx(ii,jj , ,np)=rx(ii,jj,2,np)

385 rx(ii,jj,2,np)=rx(ii,jj,3,np)
1 forw.at (/'# DOF ',3x,' DISPLACEMENT ',4x,' VELOCITY',8x,
1 ' ACCELERATION' ,4x,' RESTORING FORCE')
3 format (///5x,' NUMBER OF TIME STEP' ,3x,i5)
4 format (/'#l DOF ',3x,' DISPLACEMENT ',4x,' VELOCITY',8x,
1 ' ACCELERATION' ,4x,' FORCING FUNCTION')

5 format (i5,4x,e15 .8,4x,el5.8,2x,el5.8,4x,e13.6)
9 format (6e13.5)
15 fcrmat (2e15.6)

return
end
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